
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to  average 1   hour per  response,   including  the   time  for   reviewing   instructions,   searching   existing   data   sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.     Send comments regarding this   burden   estimate   or   any  other  aspect   of  this 
collection   of   information    including   suggestions  for   reducing  this   burden,   to   Washington   Headquarters   Services,   Directorate  for   Information   Operations   and   Reports,   1215   Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.   AGENCY USE ONLY (Leave Blank) 2   REPORT DATE 
26 October 98 

3.   REPORT TYPE AND DATES COVERED 
Final Technical Report   1 May 97 to 31 December 97 

4.    TITLE AND SUBTITLE 
Studies of Nonlinear Optical Wave Mixing and Phase Conjugation 
with Partially Coherent Waves 

5.   FUNDING NUMBERS 
F49620-97-1-0319 

6.   AUTHORS 
Pochi Yeh 

7.    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Electrical and Computer Engineering 
University of California, Santa Barbara 
Santa Barbara, CA 93106-9560 

8.   PERFORMING ORGANIZATION REPORT 
NUMBER 

9.   SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
AFOSR 
110 Duncan Avenue 
Boiling AFB, DC  20332-8080 

10.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER 

11.   SUPPLEMENTARY NOTES 

12a.    DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release;  distribution unlimited 

12b.   DISTRIBUTION CODE 

13.   ABSTRACT (Maximum 200 words) 

The main objective of this research was the theoretical and experimental investigation of the physics of self-pumped and 
mutually-pumped phase conjugators and the development of novel applications.  In addition, the scope of the research 
was expanded to include the effect of partial coherence (finite coherence length) on nonlinear wave mixing and phase 
conjugation in photorefractive media.  Specifically, the effect of finite mutual coherence on the formation of index 
gratings, especially 2k-gratings, in two-wave mixing and self-pumped phase conjugation was studied. 

W«M0« 207 
14.   SUBJECT TERMS 

Nonlinear Optics 

15.   NUMBER OF PAGES 
12 

16.   PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OFABSTRACT 
Unclassified 

20.   LIMITATION OF ABSTRACT 
UL 

NSN 7540-01-280-5500 

Reproduced From 
Best Available Copy 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-1 
298-102 



Studies of Nonlinear Optical Wave Mixing and Phase Conjugation 
with Partially Coherent Waves 

(Grant No. F49620-97-1-0319) 

Final Technical Report 
(01 MAY 97 to 31 DEC 97) 

Prepared for: 

Kimberly W. Davis/PKA 
Air Force Office of Scientific Research 

110 Duncan Avenue, Suite B115 
Boiling AFB, Washington, DC 20332-8080 

Prepared by: 

Pochi Yeh, Principal Investigator 
Electrical and Computer Engineering 

University of California 
Santa Barbara, CA 93106 

DTIC QUALITY IN8PE0TED 4 



Table of Contents 

1.0 Research Description 
1.1 Scientific Problem 

1.2 Scientific and Technical Approach 
1.3 Publications 

1.3.1 Papers Published 
1.3.2 Conference Papers Presented 

2.0 Progress 
2.1 Progress Summary 
2.2 Progress Details 
3.0 References 
4.0      Reprints of Published Papers 



1.0 Research Description 

The main objective of this research is to continue our theoretical and experimental 
investigation on physics of self-pumped and mutually-pumped phase conjugators and the 
development of novel applications. In addition, we also expand the scope of our research 
to include the effect of partial coherence (finite coherence length) on nonlinear wave 
mixing and phase conjugation in photorefractive media. This is an important and practical 
subject which has not been investigated by previous researchers. Specifically we are 
interested in the effect of finite mutual coherence on the formation of index gratings, 
especially 2k-gratings, in two-wave mixing and self-pumped phase conjugation. The 
same formulation and results can be applied to stimulated Brillouin scattering (SBS) in 
Kerr media. The original proposal requested a performance period of 36 months. Due to 
a budget cut at the AFOSR, our proposal was reduced to a 8-month program with a 
significantly lower funding level. During the research period only 8 months, we have 
carried out intensive theoretical investigation in several important areas in nonlinear 
optical wave mixing and phase conjugation, especially the problem of beam coherence. 
Specifically, we have investigated the following problems: 

• Contradirectional two-wave mixing with partially coherent waves 

• Two-wave mixing with partially coherent waves in high-speed photorefractive 
media 
• Effect of partial coherence on phase conjugation 

1.1 Scientific Problem 

The unique distortion correction property of optical phase conjugation makes it 
extremely attractive and important in many advanced optical systems. These include free 
space optical communication, atmospheric correction and beam control of high power 
lasers, optical image processing, etc. There are many approaches which can be employed 
to achieve nonlinear optical phase conjugation. These include optical four-wave mixing 
(FWM), stimulated Brillouin scattering (SBS), self-pumped phase conjugation (SPPC), 
etc. In nonlinear media such as photorefractive crystals and Kerr media, it is possible to 
achieve self-pumped phase conjugation (SPPC) and mutually pumped phase conjugation 
(MPPC)[1,2]. Such phase conjugators are ideal for optical communications through 
scattering media such as atmosphere or sea water. MPPC can also be employed for the 
phase locking of an array of lasers. 

Both SPPC and MPPC in photorefractive media have been investigated both 
theoretically and experimentally. Only transmission gratings were considered in the 
theoretical investigations for reasons of mathematical simplicity. However, in most 
experimental situations, both reflection gratings and 2k-gratings are present even when 
the coherent length of the laser is limited. A complete theory requires the inclusion of 
reflection gratings and 2k-gratings in the coupled equations. During the current research 
program, we have investigated the role of 2k-gratings and reflection gratings in 
photorefractive mutually pumped phase conjugators (MPPC). We discovered that, 
depending on the crystal orientation and the sign of the coupling constant, the presence of 
2k-gratings and reflection gratings may enhance the phase conjugation efficiency [3,4]. In 
addition, the presence of these additional gratings may lead to temporal instability in 
phase conjugation due to grating competition. 

Although reflection gratings and 2k-gratings can be neglected in some situations, 
they are significant in many important applications including phase locking of lasers 
using MPPC. In a preliminary model, we assume that the grating strength is directly 



related to the normalized mutual coherence of the input beams. Thus, by properly 
arranging the path difference between the input beams, it is possible to control the mutual 
coherence, and thus the strength of the reflection gratings and 2k-gratings. For example, it 
is possible to use two mutually incoherent beams in MPPC in which both reflection 
gratings and 2k-gratings can be neglected. This is not entirely correct in SPPC. As a 
result of a preliminary study, we found that the mutual coherence of the two beams 
actually depends on the coupling strength. In other words, the mutual coherence can be 
enhanced or reduced by the coupling. This can lead to an effective interaction length 
(length of reflection gratings and/or 2k-gratings) which can be very different from the 
coherent length. 

1.2      Scientific and Technical Approach 

Nonlinear optical phase conjugation offers unique capabilities and possibilities for 
many new applications. These include optical communication through scattering media, 
wavefront matched heterodyne detection, wavefront correction and beam control of high 
power laser beams (e.g., ABL), optical image processing, etc. Although there have been 
numerous theoretical and experimental works in this area, technical issues such as 
reflection gratings, 2k-gratings, dynamic range and stability of the conjugators remain 
unresolved. In the following, we briefly describe the effect of 2k-grating in self-pumped 
phase conjugators. We then describe a theoretical model of the role of 2k-gratings in 
SPPC and a general formulation on the effect of mutual coherence on the strength of 2k- 
gratings in photorefractive media. 

In self-pumped phase conjugators (SPPCs) the counterpropagating beams needed 
in a four-wave mixing process are generated by the incident beam itself. By a process that 
is not entirely understood, the self-generated pump beams are often formed in a 
configuration tending to optimize the phase conjugated beam. SPPCs have been 
demonstrated in a variety of configurations [2]. In SPPC involving no external mirrors, 
there are at least three different models available to explain the origin of the phase 
conjugation in a single photorefractive crystal. These are four-wave mixing with total 
internal reflection (FWM-TIR) [5,6], stimulated photorefractive backscattering (SPB) [7- 
9], four wave mixing and stimulated photorefractive backscattering (FWM-SPB) [10-14]. 
In the last model, the SPPC formation relies on both four wave mixing (FWM) and 
stimulated photorefractive backscattering (SPB). The phase conjugate beam is generated 
by a four-wave mixing process involving the incident beam, forward-propagating beam 
(the fanning beam) and its backward-stimulated scattering beam. In a manner very similar 
to stimulated Brillouin scattering (SBS), the backward-stimulated scattering beam is 
generated by the SPB process involving 2k-gratings. Hence, instead of a closed loop 
inside the crystal, filaments representing counter-propagating beams are often observed. 

In a typical SPPC experimental configuration, an extraordinarily-polarized input 
beam is incident on the a-face of a regular-cut BaTiC»3 photorefractive crystal. The SPPC 
formation mechanism is usually determined by the fanning pattern and the boundary 
conditions[12]. Generally speaking, SPPC is often generated via the SPB or FWM-SPB 
mechanisms in some doped crystals, but via the FWM-TIR mechanism in undoped 
crystals. This is mainly due to a significantly stronger fanning and larger coupling 
coefficients for 2k-gratings in doped crystals. Changing the dopant concentration or the 
operating wavelength can cause a reconfiguration of the initial fanning pattern which 
leads to a change of the physical mechanism and the reflectivity of SPPC [12-15]. 
Depending on the boundary conditions, the fanned beam may or may not reach the corner 
of the crystal cube. SPPC via FWM-TIR often involves the participation of the crystal 
corner to provide the total reflection. 



In the previous studies, we assumed that the two beams responsible for the 2k- 
gratings are mutually coherent. This is a good assumption provided that the coherence 
length of the laser is much larger than the crystal dimension. In the FWM-SPB mode of 
SPPC, the two beams are almost always coherent. This is not entirely true in some 
MPPCs and SPPCs. In the event when the coherent length of the laser is similar to (or 
even smaller than) the crystal dimension, the strength of the 2k-gratings will be reduced 
due to the reduction in the modulation depth (fringe contrast) of the interference pattern. 
Assuming no beam coupling, it is known that the modulation depth (interference fringe 
contrast) is proportional to the normalized mutual coherence of the two beams. In a 
photorefractive medium, the photo-induced index grating is proportional to the 
modulation depth (fringe contrast). Thus, it is nature to assume that the beam coupling 
constant is directly proportional to the mutual coherence of the two beams. In other 
words, 

72 = 720^12(0 (!) 

where y20 is the coupling constant for monochromatic beams, ri2(z) is the mutual 
coherence of the two beams which is a function of position z. In a contradirectional two- 
wave mixing, Tn(z) is significant only over a range of the coherence length. Thus, it is 
often assumed that the interaction length is limited to the coherence length. This 
approximation is only valid when the mutual coherence remains unchanged during the 
interaction. In the following section, we will show that the mutual coherence of the two 
interacting beams can be significantly changed as a result of the beam coupling, 
especially when the coupling constant is large. 

Two-Beam Coupling without pump depletion 

Two-wave mixing in photorefractive crystals has been investigated extensively by 
previous workers [1]. Most of the theoretical works in this area are on the interaction of 
two monochromatic beams. Two wave mixing with partially coherent beams has been 
studied recently for the case of transmission grating interaction only [19], for reasons of 
mathematical simplicity. In the case of transmission grating interaction, the optical path 
difference between the two interacting waves remains approximately the same as the two 
waves propagate codirectionally through the photorefractive medium, especially when the 
incident angles of the two waves are close to each other. In the case of reflection grating 
interaction, the optical path difference between the two interacting waves varies 
significantly as the two waves propagate contradirectionally through the photorefractive 
medium. This is the reason why the mutual coherence T12(z) depends on position. Thus, 
for the case of transmission grating interaction, only one free variable for the position is 
needed to describe in a self-consistent way the second order statistical properties of the 
two optical waves, i.e. their intensities and mutual coherence, while at least two free 
variables, one for the position and one for the optical path difference, will be needed for 
the case of reflection grating interaction. Another difficulty in studying the reflection 
grating interaction of partially coherent waves is to find a way to incorporate the 
complete boundary conditions into the theoretical formulation as a result of the two-point 
boundary value problem. In such a problem, a complete set of boundary conditions 
includes both the second order self statistical properties (e.g. self-coherence) of each 
wave at its entrance boundary and the second order mutual statistical properties (e.g. 
mutual coherence) of the two waves at their respective entrance boundaries. In this 
section, we present a preliminary theoretical investigation for the case of reflection 
grating interaction. In the case of contradirectional two wave mixing with purely 



diffusion-driven photorefractive medium, the coupled-wave equations for the slowly 
varying amplitudes E,(t,z) and E2(t,z) can be written as [19] 

3EL + 1aEL = IQi_a } 

dz     v 3t      2I1 + I2     2   ' 

9E2     ldE^yQ'-E, { a£ 

3z     v3t     2I,+I2    2   
2 

where y is the intensity coupling constant, a is the intensity absorption coefficient, v is 
the group velocity, E1exp(-icot + ikz) and E2exp(-icot - ikz) are the coupled quasi- 
monochromatic waves which interact through a dynamic photorefractive grating 
5n(z,t) oc Qexp[2ikz] + c.c. The dynamics of the photorefractive index grating can be 
written as 

X^+Q = E,E; (4) 

where  x is the relaxation time constant determined by the average total intensity, 

T ~ [{EJ) + (E2) j . Reflecting the nature of partial coherence, the complex amplitudes 

of the two waves are considered random variables, especially in the regime when the 
coherence time 5co_1 is substantially less than the relaxation time of the material 
SCOT» 1 [20]. When the optical path difference of the two beams is smaller than the 
coherence length of the laser, a dynamic photorefractive grating is recorded in the 
medium. Its position and profile are nearly stationary. Thus, as an approximation, we can 
replace the dynamic grating amplitude Q in Eqs.(2) and (3) with its ensemble average as 

Q-(E1E2*>. 

Since the complex amplitudes Ej(t,z) and E2(t,z) are stationary random 
processes, we can define some of their ensemble averages as 

ri2(z,At) = (E1(z,t1)E2*(z,t2)), rn(z,At) = (E1(z,t1)E1*(z,t2)), and 

r22(z,At) = ^E2(z,t1)E2*(z,t2)y where At = t!-t2 and ( ) means ensemble average. We 

refer to rn and T22 as the self coherence of the pump beam E](t,z) and the signal beam 

E2(t,z) respectively, and T12 as the mutual coherence between the signal beam and the 

pump beam. With these notations, we can immediately write down Q~ri2(z,0), 

l1(z) = rn(z,0) and l2(z) = r22(z,0). Eqs.(2) and (3) can therefore be reduced to a 
system for these averaged values as 

dz v      dAt 2  Ij +12 
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Note that Eqs.(5)-(7) represent the propagation of the mutual conference and self 
coherence functions of the two beams. When there is no coupling (i.e. y = 0), Eqs.(5)-(7) 
can be solved analytically. The solutions are consistent with the classical theory on 
optical wave interference in linear medium[21]. The mutual coherence function is 
presented as a propagation wave with the boundary conditions at z = 0 plane. The self 
coherence function decreases along the z axis due to absorption. When the coupling is 
present, both beams are scattered by the grating into each other. As a result, part of pump 
wave branches off in the direction of the signal waves. Thus, the mutual and self 
conference functions of the two waves can not be derived by the simple propagation of 
the boundary conditions. However, we note that Eqs.(5)-(7) are self-consistent. They can 
be solved numerically if we have the proper boundary conditions. In the presence of 
pump depletion, we can not obtain sufficient boundary conditions for typical situations. 
Therefore, although Eqs.(5)-(7) are general, they are not useful for the case of pump 
depletion. For the case of nondepleted pump, solutions with sufficient boundary 
conditions can be easily obtained. Preliminary results indicate that the contradirectional 
two wave mixing of partial coherent beams inside a photorefractive crystal with an 
inertial nonlinear response can lead to a increase of the mutual coherence substantially 
and the interaction length of the two beams. A set of the coupled equation has been 
derived to describe the propagation of the mutual coherence and the self coherence 
functions of the two beams. 

Two-Beam Coupling with pump depletion 

When beam depletion is not negligible, the investigation requires the use of 
statistical optical techniques, especially for the case of reflection gratings. In the above, 
we describe a theoretical formulation of the problem in the space and time domain for the 
reflection grating interaction in the nondepleted pump regime. By using the nondepleted 
pump approximation, we reduced the two-point boundary value problem to an initial 
value problem. In this section, we present a preliminary result of our general formulation 
of the problem in the space and frequency domain based on the standard statistical theory 
on linear systems. Specifically, we are interested in the signal intensity gain and the 
mutual coherence in the contradirectional wave mixing of two partially coherent waves. 
Photorefractive two-wave mixing is a nonlinear optical process. Because of the mutual 
coherence of the two waves, a dynamic holographic grating is formed in the medium. Its 
position and index profile are nearly stationary under the condition of a cw illumination. 
Both waves are scattered into each other by the presence of this index grating. Scattering 
of partially coherent waves by a stationary grating can be modeled with a statistical 
theory on linear systems [21]. An iterative procedure can subsequently be devised to 
obtain the final photorefractive grating profile from an initially arbitrary grating profile. 

We consider the interaction of two counter-propagating waves with partial 
coherence in a photorefractive medium between z=0 and z=L. Reflecting the partial 
coherence, Ej(z,t)  and  E2(z,t)  are treated as stationary random variables. They 



represent the random fluctuation of the amplitudes of the two waves. Let En(z,Au)) and 
E22(z,Aco) denote the self spectral density functions of Ej(z,t) and E2(z,t) respectively 

and E12(z1,z2,Aco) be the cross spectral density function between E^z^t) and E2(z2,t). 
The spectral density functions and the corresponding coherence functions are Fourier 
transform pairs, i.e. 

I"i j (z, x) = JEU (Z, ACO) exp(-iAcox)dAco (8) 

T22 (z, x) = f E22 (z, Aco) exp(-iAcox)dAco (9) 

ri2(z,x) = [E12(z,z,Aco)exp(-iAcor)dAco (10) 

where Aco = co - co0 with co being a general frequency component of the waves. With 
the above notations and relations, the intensity of the two waves can be expressed as 

I,(z) = rn(z,0) = jEn(z,Aco)dAco (11) 

I2(z) = r22(z,0) = jE22(z,Aco)dAco (12) 

and the mutual coherence of the two waves can be expressed as 

ri2(z,0) = jE12(z,z,Aco)dAco (13) 

Using these equations, the intensity of the waves as well as the mutual coherence can be 
obtained as soon as the spectral density functions are obtained. In what follows, we will 
derive the spectral density functions by using the statistical approach. 

Using the above notations and definitions, we now begin our discussion on the 
photorefractive interaction. Inside the photorefractive medium, a dynamic index grating is 
generated. It can be written as 

5n = -il^ 
2co0 

—V"r exp(2ikft
z) + c.c. 

Ink) K ' 
(14) 

where Q(z,t) is a measure of the index grating, y is the intensity coupling coefficient 
and I0(z) = I1(z) + I2(z) is the total intensity at position z. For the purpose of our 
discussion, we will call Ej as the signal wave and E2 as the pump wave. Thus, for a 
photorefractive grating with a positive y, the signal wave E1 can be amplified. If the 



photorefractive effect is based purely on carrier diffusion (e.g. BaTi03), the dynamics of 
the index grating is described by Eq. (3). By virtue of photoexcitations, photorefractive 
processes are usually slow at low intensities. It is reasonable to assume that the coherence 
time 8co-1 of the two partially coherent waves is much smaller than the relaxation time T 
of the photorefractive medium, i.e, 8cot»l. Since Ej(z,t) and E2(z,t) are stationary 
random variables, we can make the following approximation, according to Eq.(3), 

Q(z,t) = (Q(z,t)) = ri2(z,0) (15) 

In other words, two partially coherent waves with their complex amplitudes fluctuating 
randomly with time can actually write a stationary grating in a photorefractive medium 
under the appropriate conditions. For simplicity, we will denote Q(z,t) with Q(z) from 
now on. Note that Q(z) is also the mutual coherence of the two waves at position z. 
Given arbitrary functions of Q(z)  and I0(z), Eq.(14) yields an index grating. The 
propagation of a monochromatic wave through such an index grating can be described by 
the coupled wave equations. Let the general solutions be written  H^z,©) (i,j=l,2). We 
note that each input wave generates a transmitted and a reflected wave. The solutions can 
then be employed to modify the index grating as a result of the photorefractive effect. 
This leads to a new index profile   Q(z). The iterations continue until the index profile 
converges. 

In each of the iterations, an arbitrary stationary index grating can be considered as 
a linear system. We consider a given stationary index grating in the photorefractive 
medium as a linear system with the optical waves at the boundary planes z=0 and z=L as 
the input and the optical waves at an arbitrary plane z as the output. According to the 
theory on the statistical properties of linear systems, the second order statistical properties 
of the optical waves at the output plane can be expressed in terms of the second order 
statistical properties of the optical waves at the input planes and the frequency response 
of the linear system. Two physical processes happen simultaneously during two-wave 
mixing in a photorefractive medium. First, the two optical waves propagate through the 
photorefractive medium while being scattered into each other by the index grating. 
Second, the scattered waves modify the index grating through the photorefractive effect 
until a steady state is reached. We have provided above a mathematical model that 
describes these two physical processes separately. A steady state of the two-wave mixing 
in the photorefractive medium is reached when the two optical waves scattered by the 
photorefractive grating can exactly sustain the same photorefractive grating. A steady 
state solution of the two-wave mixing in a photorefractive medium can thus be obtained 
by using the mathematical model described above through an iterative procedure. The 
research results in this program are based on the statistical approach described above. 

1.3 Publications: 

1.3.1 Papers Published: 

X. Yi, C. Yang, P. Yeh, S. Lin, K. Y. Hsu, "General solution of 
contradirectional two-wave mixing with partially coherent waves in 



photorefractive crystals," J. Opt. Soc. Am., B, Vol. 14, No. 6,1396-1406 
(1997). 

X. Yi and P. Yeh, "Two-wave mixing with partially coherent waves in high- 
speed photorefractive media," J. Opt. Soc. Am., B, Vol. 14, No. 11, 2885-2894 
(1997). 

X. Yi and P. Yeh, "Effect of partial coherence on phase conjuagtion," Opt. 
Comm., Vol. 147, Nl-3,126-130 (1998). 

1.3.2 Conference Papers: 

X. Yi and P. Yeh, "Phase conjugation through turbulent atmosphere," 1997 
OSA Annual Meeting (Long Beach, CA, October 13-17,1997), paper MJJ4. 

R. Wang and P. Yeh, "Optical power limiting via both two-wave mixing and 
beam fanning in BaTi03 crystals," 1997 OSA Annual Meeting (Long Beach, 
CA, October 13-17,1997), paper ThFF24. 

X. Yi, P. Yeh and S. Campbell, "Effect of thermal expansion on holographic 
memory," 1997 OSA Annual Meeting (Long Beach, CA, October 13-17,1997), 
paper FK4. 

P. Yeh, "Nonlinear Optical Wave Mixing with Partially Coherent Waves," 
(Invited Paper) Waseda International Symposium on Phase Conjugation and 
Wave Mixing, June 9-10,1997 (Waseda University, Tokyo, Japan). 

P. Yeh, "Recent Advances in Photorefractive Nonlinear Optics," (Invited 
Paper) CLEO/Pacific Rim'97 (July 14-18, Tokyo, Japan, 1997). 

2.0 Progress: 

2.1 Progress Summary: 

2.1.1 Contradirectional two-wave mixing with partially coherent waves 

During the period we investigated the contradirectional two-wave mixing with partially 
coherent waves in photorefractive media. We first considered the case when the material 
response is slow. This is typical of the photorefractive crystals with typical laser powers. 
By use of the statistical method described above, a general solution of the problem in the 
space and frequency domain is obtained. We obtained results on beam intensity and 
mutual coherence. The results on the enhancement of beam coherence are compared with 
previous theoretical results on simpler cases and with experimental measurements. 
Excellent agreements are achieved. The results also indicate that the effective interaction 
length can be significantly longer than the coherence length of the waves. 

2.1.2 Two-wave mixing in high speed media 

In the case when the laser power is very high, the material response is proportionally 
fast. We investigated the coupling of two partially coherent waves in photorefractive 



media with a fast temporal response. When the coherence time of the waves is close to 
the speed of the photorefractive media, the photo-induced index grating will follow the 
amplitude fluctuation of the optical waves. The stochastic coupled wave equations are 
solved in the non-depleted pump region. The effects on the evolution of the signal wave 
are obtained. 

2.1.3 Effect of partial coherence on phase conjugation 

During the period, we also investigated the effect of partial temporal coherence of the 
incident wave on the phase conjugation process based on 2k-grating. In many 
photorefractive phase conjugators, 2k-gratings are generated by the incident beam and the 
phase conjugated beam. The phase conjugated beam will be amplified by the incident 
beam via contra-directional two-wave mixing. The strength of the 2k-grating and 
therefore the phase conjugate reflectivity will be dependent on the coupling between 
them. We obtained both theoretical and experimental results of the effect of beam 
coherence on the phase conjugate reflectivity. 

2.2 Progress details: 

Since most of the details of research results have already been published in 
technical journals. Detail discussion on the research results can also be found in Section 4 
which contains reprints of the papers published. 
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Abstract 

We investigate the effect of partial temporal coherence of the incidence wave on optical phase eoniugation based on 2k 
grating. In many photorefractive phase conjugators. 2k gratings are generated by the incident beam and the phase conjugate 
beam. The phase conjugate beam will be amplified by the incident beam via contradirectional beam coupling between these 
two beams through the 2k gratings. The strength of the 2k grating and therefore the phase eoniugation rellecmm «ill be 
affected by the partial coherence between the incident wave and the phase conjugate wa\e. This elleet is studied both 
theoretically and experimentally. © 1998 Elsevier Science B.V. 

1. Introduction 

Most of the previous works on the basic theory of wave 
mixing in photorefractive media are based on the assump- 
tion that the interacting waves are monochromatic. Most of 
the subsequent theoretical works on optical phase conjuga- 
tion in photorefractive media are developed from those 
theories, and are based on the same assumption [1.2]. 
However, in some applications of phase conjugation, the 
partial coherence of the incidence wave is a matter of 
reality [3]; in some configurations of phase conjugation. 

: the partial coherence between the interacting waves are 
affecting generating the phase conjugate waves [4.5]. Some 
theoretical works have been done to take into account the 
effect of partial coherence on phase conjugation in recent 
years, but mostly in a heuristic way due to the lack ot a 
working theory on wave mixing with partially coherent 
waves (4.5]. In this paper, we apply a rigorous theory of 
two-wave mixing with partially coherent waves to study 
the effect of partial temporal coherence of incidence wave 
on phase conjugation [6.7]. it is well known that the 2k 
erating formed by the incident wave and the phase conju- 
gate wave plays an important role in many phase conjuga- 
lon configurations. The strength of the 2k grating can be 
»trongly affected by the partial coherence of the incident 
Nave. This is the primary  subject of this paper.  We 

investigate this subject both theoretical!) and experimen- 
tally. 

2. Theoretical model 

Optical phase conjugation in pliotorelraciiu' media is 
in general a very complicated process. There are inanv 
different experimental configurations ol generating phase 
conjugation. From the theoretical point ol \iev\. there are 
two major mechanisms: phase conjugation \ia stimulated 
backward scattering [8.9] and phase eoningation via lout- 
wave mixing [10). The schematic dtagiani ot phase eonin- 
gation via stimulated backward scattering is shown in hg 
Ha). The incident laser beam is scattered due to surface 
pits, imperfection and delects in the crwal. The scattered 
light intersects with the incident beam and the> undergo 
two-wave mixing.  In photoretracuw  media  with  suth- 
cientlv large coupling constant, the scatteied light can be 
amplified,  leading  to phenomena  such  as  iaiming  and 
stimulated backward scattering. Inder the appropriate eon 
dition. the phase conjugation ol the mciuviit beam domi 
nates the stimulated scattering ot the incident beam as %1 

result of mode competition. The scncmatic diagram ol 
phase conjugation via tour-wa\e mixing is shown in he 
Kb). In this case, the phase omiugation ot the incident 

D03O-4018/98/$ 19.00 C 1998 Elsevier Science B.V. All rights reserved 
Pll S0030-40l8(97)00657-3 
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beam is directly generated in a four-wave mixing process. 
The two pump waves in the four-wave mixing process are 
provided externally in the generic experiment of phase 
conjugation via four-wave mixing. In photorefractive crys- 
tals, these pump beams can be generated by fanning and 
boundary reflection in self-pumped phase conjugation and 
mutually pumped phase conjugation. In both mechanisms, 
a 2k grating will be generated by the incident beam and 
the phase conjugate beam. The phase conjugate beam may 
be amplified by the incident beam in two-wave mixing 
between these two beams through the 2k grating, provided 
that the crystal is in proper orientation. When partially 
coherent waves are used in the phase conjugation experi- 
ment, the 2k grating strength and therefore the phase 
conjugation reflectivity will be affected by the partial 
coherence between the incident wave and the phase conju- 
gate wave. This effect can be modeled using the theory on 
contradirectional two-wave mixing with partially coherent 
waves. In some cases, the fidelity of phase conjugation 
depends upon the coupling strength between the incidence 
beam and the phase conjugate beam, e.g. phase conjuga- 
tion via stimulated backward scattering. Since the partial 
coherence between the two interacting waves reduces the 
coupling strength, it may also reduce the fidelity of phase 
conjugation. However, this is beyond the scope of our 
discussion. In our theoretical model, we assume both 
beams are plane waves. 

The schematic diagram of contradirectional two-wave 
mixing with partially coherent waves is shown in Fig. 2. 
£,(c,f)exp(-io>/ + ikz) is the signal wave and 
£2(c,r)exp(-iö)f-ifa) is the pump wave, where £|(z,r) 
and E2(z,t) are the random fluctuating optical wave am- 
plitudes. These two waves interact through the 2k grating 
8n{ z) a Q( z)exp(2ifa) + ex. In phase conjugation exper- 
iments, photorefractive crystals with very large coupling 
constants are preferable. When those photorefractive crys- 
tals are used, fanning often occurs as a result of the strong 
coupling constant. In some configurations, fanning even 
plays a vital favorable role in generating phase conjuga- 
tion. On the other hand, fanning also induces significant 
and anisotropic attenuation of the optical waves. This 
anisotropic attenuation needs to be taken into account 
when we compare the theoretical results and the experi- 
mental results. We denote the intensity attenuation coeffi- 
cient of optical waves propagating along the positive z 

signal 

(a) 

Fig. 1. Schematic diagrams of the two major phase conjugation 
mechanisms: (a) phase conjugation via stimulated backward scat- 
tering and (b) phase conjugation via four-wave mixing. 

Ei(z,t)«xp<-<<uot+Hcoz) 

pump 

E2<tt)«tp<-lcDot-ll«oz) 

ZsO Z=L 

5n(z,t)-Q(z,t)«xp(2lko*)+c-e. 

Fig. 2. Schematic diagram of contradirectional two-wave mixing 
with partially coherent waves. 

direction as a, and the intensity attenuation coefficient of 
optical waves propagating along the negative : direction 
as a2. The difference is a result of the different fanning 

energy loss. 
The coupled-wave equations for the slowly varying 

amplitudes £,(z,r) and E2(ZJ) can be written as [6.7] 

'   QE2 d£,      1 d£, 

dz 

dE2 

17 

+ -• 
v dt 

1 BE2 

v   dt 

 £,. 2 /, + /,       2    ' 

y Q'E,       a2 
 + —£,. 
2 /, + /,       2    - 

(1) 

C-) 

where /, and l2 are the intensities of the two waves, y is 
the intensity coupling constant, and r is the group velocity 
of light in the photorefractive medium. Since the coher- 
ence time Scj~l of the partially coherent waves is substan- 
tially less than the relaxation time T of the material, i.e. 
8a>T» 1 [11], the photorefractive grating is temporally 
stationary. As an approximation, the photorefractive grat- 
ing amplitude factor Q is equal to the mutual coherence of 

the two waves, i.e. 

ß = <e>=<£,£;>. P) 
Since the complex amplitudes £,(:./) and £:(:.;) are 

stationary random processes, we can define some of their 
ensemble averages as rr(:..lt) = <£,(;./,)£,"(:.;,)). 
rM(z,Ar) = <£:t(c,r,)£:|-(r.r,)>. and /\2(;..A/) = 
<£2(z,r,)E2"(c,r2)>, where li = r, - /,. We refer tu T,, 
and* r22 as the self coherence of the signal wave £,( :.;) 
and the pump wave E2(:..t) respectively, and ri2 as the 
mutual coherence between the signal wave and the pump 
wave. With these notations, we can immediately write 
down Q = Tl2( c,0), /, = ri,(:.0) and /: = f::( :.0). Eqs. 
(l)-(3) can be reduced to a set of coupled equations for 
these average values as [12] 

ar12(z.Ar)      2drl2(z.±t) 

dz 

+ - 
yr]2(z.o) 

2    /, + /, 
[r„(:.A;) + r,:(;.A/)] 

•r,,(:.AO. (4) 
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gr„(:.Af) _ y [iii^l 
d-        = 2    /, + /, 

r,;(;.-Af) 

«*!%,( :.Af) 

yr,;(=-Q)r , 
2 /,+/, 

-a,rn(;.Af), 

yr,,(c.O) 

•Ar) 

(5) 

2    /, + l2 

r,;(c,-A/) 

rf,;(:,o) 

2    /| + /2 

ri:(:.A/) 

-a2r;2(:.A/). (6) 

This is a set of self-consistent partial differential equations 
governing the propagation of the mutual coherence and 
self coherence functions of the two waves. The boundary 
conditions needed to solve Eqs. (4)-(6) can be easily 
obtained in the nondepleted pump regime. We assume that 
both the signal wave and the pump wave are derived from 
the same source wave. If the source wave has a Gaussian 
lineshape with a linewidth of 8<o, then the normalized self 
coherence function of the source wave can be written as 

rs(A/) = exp 
SwAf 

4v/hT2 
(7) 

At the signal wave incident plane : = 0, the intensity ratio 
between the signal wave and the pump wave is assumed to 
be ß. In our simulation, the intensity of the pump wave is 
taken to be 1. Then the boundary conditions at the signal 
wave incidence plane can be written as 

ri:(; = 0.AO = V^rs(Af + fd). (8) 

rn(: = 0.Af)S^(Ar), (9) 

A,(; = 0,Ar)Srs(AO, 0°) 

where rd is the time delay between the two waves at the 
signal wave incidence plane. 

Eqs. (4)-(10) is a simplified theory on two-wave mix- 
ing with partially coherent waves in the nondepleted pump 
regime. It is sufficient in our present discussion. The 
general theory that takes into account pump depletion is 
also available [13]. Equations similar to Eqs. (4)-(10) have 
been derived in Ref. [7]. Here, we derived these equations 
to include the anisotropic attenuation due to fanning. In- 
cluding this effect is essential to achieve good agreement 
between theory and experiment in studying the effect of 
partial coherent on phase conjugation, while it is not 
essential in studying the effect of partial coherence on 
two-wave mixing in the nondepleted pump regime. 

We show in Fig. 3 the phase conjugation reflectivity as 
a function of the coherence length of the incident beam for 
various values of the coupling constant y. The parameters 
in this simulation are n = 2.3, L = 0.72 cm, a = 0.0 cm 
and ß = 1.0 x 10-6. The time delay of the two waves is 

10° 

Ml) 

10-1 i- 

10-2 

10"' 

10-4 

io-5 

10-« 

Y=20cm"1 

Y=15cm'1 

'■plOcrn1 

Y=5cm' 

1 10 
Lc/L 

Fig. 3. Simulation results: phase conjugation reflectivity as a 
function of the coherence length of the incident beam for various 
values of the coupling constant y. 

assumed to be zero at the signal wave entrance plane 
(: = 0). The coherence length of the incident beams is 
related to the bandwidth as Lc = 2:rX 0.664c/5w. We 
note that the phase conjugation reflectivity increases as the 
coherence length of the incident beam increases and reaches 
a constant when the coherence length of the incident beam 
is much longer than the thickness of the photorefractive 
medium. We also note that the phase conjugation reflectiv- 
ity increases as the coupling constant increases. 

3. Experiment 

In typical phase conjugation experiments, there are 
many physical processes going on inside a single crystal. 
These processes are very sensitive to the particular experi- 
mental setup, due to the anisotropic nature of the photore- 
fractive crystals, the presence of fanning, the competition 
between various phase conjugation mechanisms, and other 
factors. The parameters necessary to model quantitatively 
any of the processes have to be determined in situ. Most of 
the parameters are very difficult to measure in situ. It is 
even more difficult to tune the parameters when the pho- 
torefractive crystals and the equipments available are lim- 
ited. Fortunately, here we are only studying one of those 
physical processes that can be significantly affected by the 
partial coherence of the interacting waves, i.e. the two-wave 
mixing process between the incident wave and the phase 
conjugate wave. To single out this process for ease of 
study, we can perform a simulated phase conjugation 
experiment. 

The experimental setup is shown in Fig. 4. The incident 
wave is an extraordinarily polarized plane wave from a 
multimode argon laser. The photorefractive media are 
KNbO, crystals with a medium gain. The plane wave 
incident upon those crystals passes through them with 
slight scattering and fanning but no phase conjugation. The 
initial phase conjugate wave is the optical wave reflected 
from the mirror which is placed perpendicularly to the 
plane wave incident upon it. A neutral density filter is 



Mkrer     NDF     PR CrftMl B«n Splitter     Argon laaar 
(AÄ6H.5nm) 

X 

t-4 *"0 
O 

Datactor 

Fig. 4. Experimental setup of a simulated phase conjugate mirror. 

placed between the mirror and the photorefractive crystal 
to adjust the intensity of the phase conjugate wave before 
the phase conjugate wave enters the photorefractive crys- 
tal. The distance between the mirror and the photorefrac- 
tive crystal is adjusted with a translation stage. The phase 
conjugate wave is amplified by the incidence wave via 
two-wave mixing inside the photorefractive crystal. The 
phase conjugate wave is then separated from the incidence 
wave with a beam splitter and its intensity is measured 
with an optical detector. We consider the photorefractive 
crystal, the neutral density filter and the mirror together as 
a phase conjugate mirror, which simulates the phase conju- 
gation process in typical phase conjugation experiments. 
One major advantage of the above experimental setup is 
that most of the parameters necessary to quantitatively 
model the experiment can be measured in situ. 

First, we measure the bandwidth of the multimode 
argon laser light. This is done by measuring the autocorre- 
lation function of the laser light with a typical Michelson 
interferometer. The lineshape of the laser light is approxi- 
mately Gaussian. By fitting the measured autocorrelation 
function with the Gaussian self coherence function given 
by Eq. (7). we obtain the bandwidth of the laser light. The 
bandwidth of the argon laser light increases as the driving 
current increases. We can change the bandwidth of the 
argon laser light by tuning the driving current. The driving 
current of our argon laser can be tuned continuously from 
15 A to 40 A. The bandwidth of the argon laser light 
changes from 2.0 GHz to 5.0 GHz. The corresponding 
range of the coherence length is from 4.0 cm to 10.0 cm. 
The typical thickness of the photorefractive crystals we 

have is less than 1.0 cm. 
The coherence length of the argon laser, although tun- 

able in a certain range, is still long compared with the 
thickness of the photorefractive crystals we have. This 
limitation of equipment can be overcome by changing the 
distance between the mirror and the photorefractive crystal 
in the setup shown in Fig. 4. The sum of the thickness ot 
the photorefractive crystal and the distance between the 
mirror and the photorefractive crystal is considered as the 
total interacting length between the incident wave and the 
phase conjugate wave. In this way. we can change arbitrar- 
ily the ratio between the coherence length of the incidence 
wave and the total interacting length of the two waves. We 
also note in our experiment that the attenuation coeffi- 

cients of the photorefractive crystals are sensitive to the 
intensity of the light. This is probably due to fanning, 
which is a nonlinear effect. To overcome this problem, the 
intensity of the incidence wave is always adjusted to one 
level by using a polarizer and a polarization beam splitter. 
In our experiment, we choose the power of the incidence 
wave to be 10.0 mW. By choosing a low incidence power, 
we slow down the photorefractive grating relaxation time. 
This makes the measurements easier. 

We now show the experimental results. Two photore- 
fractive crystals are used in the experiment: a KNbO,:Co 
crystal and a KNbO,:Ni crystal. The KNbOvCo crystal is 
0° cut and light propagates parallel with the c-axis. The 
KNbO,:Ni crystal is 45° cut and light propagates at 45° 
with the c-axis. The thicknesses and the refractive indexes 
of the two crystals are approximately the same: L = 0.7 
cm and n = 2.4. For the KNbO,:Co crystal, the coupling 
constant y-6.4 cm"1, the attenuation coefficients a, = 
2.8 cm" ' and o, = 3.6 cm" '. For the KNbO,:Ni crystal. 
the coupling constant y = 3.7 cm " '. the attenuation coeffi- 
cients a, =2.5 cm"1 and a2 = 3.5 cm"1. The transmit- 
tance of the neutral density filter is ;ND = 0.0081. The 
experimental parameters are measured during the setup ot 
the optical circuit. Once a parameter is measured, the pan 
of the optical circuit that is related to that parameter is 
never changed again during the subsequent measurements. 
The difference of the attenuation coefficients of the two 
crystals are small compared with the difference of the 
coupling constants of the two crystals. Using these two 
crystals is equivalent to changing only the coupling con- 
stant. This cannot be done by using only one crystal and 
changing the polarization of the incidence wave. Changing 
the polarization of the incidence wave changes both the 
coupling constant and the attenuation coefficients at the 
same time. In Fig. 5. we show the phase conjugation 
reflectivity as a function of the crystal-mirror separation 
for two values of the incidence wave bandwidth in the 
KNbO,:Co crystal. The dots are experimental data and the 
solid curves are the theoretical results. The bandwidth ot 
the arcon laser wave is 2.6 GHz when the driving current 

10.0 

£     1.0  h 

s 
u 
a 

0 12 3 4 5 6 
Crystal-Mirror Separation d (cm) 

Fig. 5. Experimental results: phase conjugation reflectivity as a 
function of the crystal-mirror separation for two values of the 
incidence wave bandwidth 
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Fia 6 Experimental results: phase conjugation reflectivity as a 
function of the crystal-mirror separation for two values ot the 
photorefractive coupling constant. 

of the argon laser is 20 A. The bandwidth of the argon 
laser wave is 5.2 GHz when the driving current of the 
argon laser is 40 A.  According to Fig. 5, the phase 
conjugation reflectivity increases as the bandwidth of the 
incidence wave decreases. In addition, the phase conjuga- 
tion reflectivity decreases as the crystal-mirror separation 
increases. In Fig. 6, we show the phase conjugation reflec- 
tivity as a function of the crystal-mirror separation for two 
values of the photorefractive coupling constant. The dots 
are experimental data and the solid curves are the theoreti- 
cal results. Both the two crystals are used to achieve the 
two different coupling constants. The driving current of the 
argon laser is set at 20 A so that the bandwidth of the 
incidence wave is 2.6 GHz. According to Fig. 6. the phase 
conjugation reflectivity increases as the photorefractive 
coupling  constant   increases  and   it  decreases   as   the 
crystal-mirror  separation   increases.   The   experimental 
measurements are in good agreement with the theoretical 

results. 

4. Conclusions 

In conclusion, we have investigated the effect of partial 
coherence of the incident wave on photorefractive phase 
conjugation. We have studied specifically the effect ot 

partial coherence of the incident wave on the 2k grating 
generated by the incident wave and the phase conjugate 
wave. A rigorous theory on two-wave mixing with par- 
tially coherent waves is applied to the theoretical analysis. 
A simulated phase conjugation experiment is performed to 
investigate the effect. The experimental results are in good 
agreement with the theoretical predictions. We found that 
the partial coherence of the incident wave can reduce the 
strength of the 2k grating and the phase conjugation 
reflectivity. 
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We investigate the coupling of two partially coherent waves in high-speed photorefractive media. When the 
coherence time of the optical waves is close to the speed of the photorefractive media, the photoinduced index 
grating will follow the amplitude fluctuation of the optical waves. The stochastic coupled-wave equations are 
solved in the nondepleted pump region. The effects on the evolution of the signal wave are presented and 
discuased    © 1997 Optical Society of America (S0740-3224O7KM811-X] 

1.   INTRODUCTION 
Nonlinear propagation and interaction of partially coher- 
ent optical waves in photorefractive materials have re- 
ceived a lot of attention in recent years, because of appli- 
cations including image amplification, optical 
interconnection, optical phase conjugation, and photore- 
fractive filters.1"6 In most previous theoretical analysis, 
photorefractive materials have been assumed to have a 
long response time r so that their photorefractive nonlin- 
earity does not follow the instantaneous fluctuation of the 
partially coherent optical waves.7"15 However, the re- 
sponse time of the photorefractive materials depends both 
on the materials themselves and on the intensities of the 
interacting waves.16 Furthermore, whether the instan- 
taneous photorefractive nonlinear response can be ne- 
glected depends on the relative photorefractive response 
time with respect to the bandwidth &o of the interacting 
waves rather than on the photorefractive response time 
itself. The assumption of neglecting the instantaneous 
photorefractive response is valid mainly for low optical in- 
tensities and wide optical bandwidths so that the condi- 
tion SOJT > 1 is satisfied. When the optical intensity is 
high and the optical bandwidth is narrow so that SCOT is 
of the order of unity, the photorefractive nonlinearity will 
respond to the instantaneous fluctuation of the partially 
coherent optical waves. The nonlinear optical properties 
in the high-speed case are significantly different from 
those in the low-speed case. 

In this paper we investigate codirectional two-wave 
mixing with partially coherent waves in high-speed pho- 
torefractive media. When the spectral bandwidth of the 
optical waves is close to the speed of the photorefractive 
media, the photoinduced index grating will fluctuate with 
the partially coherent optical waves. This case is much 
more complicated than the corresponding case in low- 
speed photorefractive media. To simplify the problem, 
we limit our analysis to the nondepleted pump region and 
assume that the pump wave has only phase noise. The 
effects on the evolution of the signal wave are determined. 
The results show that beam coupling can still be achieved 
for incoherent beams provided that the material reacts 
fast enough.   It is important to distinguish wave mixing 

due to shared noise gratings9"11 from the direct coupling 
of incoherent beams described here. 

This paper is divided into three sections. In Section 2, 
a set of stochastic coupled-wave equations is introduced 
along with the necessary assumptions that ensure their 
validity in the high-speed case.17 In Section 3, the sto- 
chastic coupled-wave equations are reduced to nonsto- 
chastic differential equations, from which the signal in- 
tensity and the mutual coherence of the two waves are 
obtained. In Section 4, the stochastic coupled-wave 
equations are rewritten into a series form, from which an 
asymptotic solution of the signal wave bandwidth is ob- 
tained. 

2.  THEORETICAL MODEL 
In this section we present a theoretical model of wave 
mixing in the medium. Several major assumptions are 
made and discussed as we derive the theoretical model. 

The system configuration is shown in Fig. 1. The sig- 
nal wave and the pump wave enter the photorefractive 
medium at the incidence plane z = 0. The bisector of the 
two beams is perpendicular to the surface normal. A 
transmission grating with grating wave vector along the x 
direction is generated inside the photorefractive medium. 
The two optical waves are coupled through the index grat- 
ing. 

We assume that the two optical waves are plane waves 
of infinite extent in the transverse dimension. This is 
the first major assumption we make. Under this as- 
sumption the evolution of the optical-wave amplitudes 
can be confined to only one dimension. Thus, the optical 
waves inside the photorefractive medium can be written 
as 

E(z, t) = Et(z, t)exQ(-iw0t + ik,,,* - »kor*) 

+ E2(z, f)|exp(-»ü»o< + iko,* + »kor*), 

(1) 

where E(z, t) is the-total electric field of the two waves, 
Et is the signal wave complex amplitude, E2 is the pump- 
wave complex amplitude, to0 is the center frequency of the 

0740-3224/97/112886-10$10.00      © 1997 Optical Society of America 
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Fig. 1. System configuration: correctional two-wave mixing 
with partially coherent waves. 

two partially coherent waves, ko = nm0lc is the center- 
wave vector, n is the refractive index of the photorefrac- 
tive medium, and c is the speed of light in vacuum. 
Reflecting the partial coherence, Ex(z, t)an&E2(z, t) are 
stationary random variables. They represent the ran- 
dom fluctuation of the amplitudes of the two waves. 

The instantaneous intensities of the two waves are 
E,(z. t)Ex*(z, t) and E2(z, t)E2*(z, t). In general, 
they fluctuate randomly with time, e.g., as in thermal 
light and multimode laser light. The intensities of the 
two waves are denned as the ensemble average of their 
respective instantaneous intensities: 

(2) 

(3) 

/,(«)-<£,(*. t)Ex*(z, t)), 

/,(*) - (£,(«, t)E2*{z, t)). 

The intensities of the two waves as denned by Eqs. (2) 
and (3) are always constant over time. There is a special 
case. When a partially coherent optical wave has only 
phase noise, its instantaneous intensity is a constant over 
time and is equal to its ensemble averaged intensity, e.g., 
for single-mode laser light. The instantaneous mutual 
coherence of the two waves is £,(z, t)E2*(z, t), which 
also fluctuates randomly with time. The mutual coher- 
ence of the two waves is denned as the ensemble average 
of the instantaneous mutual coherence of the two waves. 

We now consider the photorefractive grating dynamics. 
In the case of two-wave mixing with partially coherent 
waves in low-speed photorefractive media, the photore- 
fractive grating can be written as 

Sn(z, t) = -ir 
y c  <£,(*, t)E2*(z, t)) 

2 w0      Ix(z) + I2(z) 

x exp( -211*0,*) + cc. (4) 

where y is the intensity coupling coefficient. The ampli- 
tude of the photorefractive grating is proportional to the 
ensemble averaged mutual coherence of the two waves 
and is inversely proportional to the ensemble averaged to- 
tal intensity of the two waves. In low-speed photorefrac- 
tive media the photorefractive nonlinearity does not re- 
spond to the instantaneous fluctuations of the partially 
coherent optical waves. Equation (4) is a valid approxi- 
mation for most kinds of partially coherent wave, e.g., 
thermal light, multimode laser light, and single-mode la- 
ser light. In high-speed photorefractive media, the pho- 
torefractive nonlinearity responds to the instantaneous 
fluctuation of the partially coherent optical waves. Both 
the fluctuation of the instantaneous mutual coherence of 
the two waves and the fluctuation of the instantaneous to- 

tal intensity of the two waves need to be taken into ac- 
count to allow us to determine the photorefractive grat- 
ing. This is a difficult task in general. To overcome this 
difficulty, we introduce two more major assumptions. 
One is that the pump wave is much stronger than the sig- 
nal wave and is undepleted in the course of the interac- 
tion. The other is that the pump wave has only phase 
noise at the incidence plane. Under these two assump- 
tions, the pump wave will have only phase noise through- 
out the photorefractive medium. The instantaneous to- 
tal intensity of the two waves is approximately equal to 
the instantaneous intensity of the pump wave and is a 
constant over time throughout the photorefractive me- 
dium. We now need only to consider the instantaneous 
mutual coherence of the two waves to determine the pho- 
torefractive grating. The photorefractive grating can be 
written as 

5n(z,t) = -i%—     *'[   exp(-2tkort) + cc,   (5) 

where Q(z, t) is the photorefractive grating amplitude 
factor. In a photorefractive medium of purely diffusive 
type, the dynamics of the photorefractive grating can be 
written as 

dQ(z, t) 

dt 
+ Q(z, t) = £,(z, t)E2*(z, t),       (6) 

where r is the photorefractive grating relaxation time 
constant. Equation (6) can be written in an integral 

form, 

Q(z, t)-\[ Ex{z, t')E2'(z, naxp(^—)d*'. 

(7) 

Equation (7) is mathematically equivalent to Eq. (6) and 
is sometimes more convenient to use than Eq. (6) in our 
analysis. 

With the photorefractive grating given by Eq. (5) and 
the undepleted pump assumption, we can write the 
coupled wave equations as 

aEriz.t)  t  ia,(«,i)_yQM „    (g) 

dz v       dt 2   I2(z) 

dE2(z, t)       1 dE2(z, t) 
—————    +     ~~ "i 

dz V dt 
(9) 

where v is the group velocity of the two waves in the pho- 
torefractive medium. In arriving at Eqs. (8) and (9), we 
have also assumed that there is no absorption in the pho- 
torefractive medium. This is the fourth major assump- 
tion needed to simplify the analysis. A linear absorption 
can later be incorporated into the coupled wave equa- 

tions. 
In the above derivation we have made no assumption 

about the statistical properties of the signal wave. The 
signal wave is allowed to have both intensity noise and 
phase noise at the incidence plane. In addition, the sta- 
tistical properties of the signal wave are also allowed to 
change in the course of interaction. The assumption that 
the pump wave at the incidence plane has only phase 
noise can be justified with typical experimental condi- 
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tions. According to Ref. 16, the photorefractive grating 
relaxation time constant decreases as the total intensity 
of the two interacting waves increases. When the total 
intensity is low, e.g., 1 W/cm2, the grating relaxation time 
constant falls into the range from 1 ms to 1 s. When the 
total intensity is high, the grating relaxation time con- 
stant can be of the order of 1 us or lower. The bandwidth 
of an optical wave whose coherence time is close to the 
grating relaxation time at the short end will be of the or- 
der of 1 MHz. This is a narrow bandwidth even for a 
single-mode laser source. The assumption that the pump 
wave at the incidence plane has only phase noise agrees 
well with experiments in which the pump wave is ob- 
tained from a single-mode laser. As we shall see, this as- 
sumption and the undepleted pump assumption lead to 
significant simplifications for solving the coupled-wave 
equations. 

To solve the coupled-wave equations, we need to know 
certain information about the statistical properties of the 
signal wave and the pump wave at the incidence plane as 
the boundary condition. Without loss of generality, we 
assume that the signal wave and the pump wave are ob- 
tained from the same source laser wave. We also assume 
a single-mode laser source and that the source laser wave 
has only phase noise. The optical wave amplitudes 
£,(z, t) and E2(z, t) at the incidence plane can thus be 
written 

Ei(0,t) = x/T^Ojexpt-io« + td)], 

£,(0,D- v7i(Ö)exp[-«<?«)], 

(10) 

(11) 

where tj is the time delay between the signal wave and 
the pump wave at the incidence plane and 0(t) is a ran- 
dom variable representing the random phase fluctuation 
of the optical-wave amplitudes at the incidence plane. 
The random phase (Kt) is assumed to have stationary in- 
crements [i.e., (Kt + St) - 6(t) is statistically indepen- 
dent of the time t]. Furthermore, the increment over an 
arbitrarily given time period St, i.e., bdiSt) = (Kt + St) 
- 6(t), is assumed to have a Gaussian distribution. The 
random phase shifts over nonoverlapping time intervals 
are assumed to be statistically independent. Under 
these assumptions, the source laser wave has a Lorentz- 
ian line shape, i.e., the typical line shape of a single-mode 
semiconductor laser. The variance of the random phase 
shift over an arbitrarily given time period St is related to 
the bandwidth of the source laser wave Sta as 

(WSt))2 = St»St. (12) 

The above assumptions for the source laser wave are typi- 
cal for a single-mode laser source. 

The theoretical model is complete with the coupled 
wave equations (7)-(9) and the assumptions for the sta- 
tistical properties of the signal wave and the pump wave 
at the incidence plane as the boundary condition. 

3.   SIGNAL INTENSITY AND MUTUAL 
COHERENCE 
In this section we solve for the signal intensity and the 
mutual coherence of the two waves. The nonlinear sto- 
chastic partial differential equations (7)-(9) are reduced 

to nonstochastic differential equations, the solutions of 
which include the signal intensity and the mutual coher- 
ence of the two waves. This section is further divided 
into three subsections. 

A.   Solutions 
In this subsection the coupled-wave equations (7)-(9) are 
solved, and the expressions for the signal intensity and 
the mutual coherence of the two waves are obtained along 
with the necessary boundary conditions. 

We first look at the pump wave. At the incidence 
plane, the pump wave has only phase noise. With Eq. 
(9), the amplitude of the pump wave inside the photore- 
fractive medium can be written as 

E2(z, t) = E2(0,t - z/v). (13) 

The pump wave propagates through the photorefractive 
medium without changing its statistical properties. 
Therefore the pump wave has the same intensity and has 
only phase noise throughout the photorefractive medium, 
i.e.. 

I2(z) = /2(0). 

E2(z, t)E2*(z, t) = /2(0). 

(14) 

(15) 

Note that the instantaneous intensity E2(z, t)E2*(z, t) 
is a constant equal to the ensemble-averaged intensity 
when E2(z, t) has only phase fluctuations. 

Second, we consider the mutual coherence of the two 
waves. We denote the instantaneous mutual coherence 
of the two waves as 

F(z, t) - E^z, t)E2*(z, t). 

Using Eqs. (7)-(9), and (15), we obtain 

(16) 

dF(z, t)       1 3F(z, t)       y 1 
dz v       dt 

= -Texp 
■;)/>• ''> 

x exp — dt'. (17) 

This equation governs the propagation of the instanta- 
neous mutual coherence of the two waves in the photore- 
fractive medium. Note that Eq. (17) is a linear equation 
of the random variable F(z, t). Taking the ensemble av- 
erage of Eq. (17), we obtain 

(F(z, O> = <F(0,<))exp|y|. (18) 

(F(z, t)) is the ensemble-averaged mutual coherence of 
the two waves. According to Eq. (18), the mutual coher- 
ence of the two waves increases exponentially with the 
position z. 

We now define a fourth-order coherence function of the 
optical-wave amplitudes Ex(z, t) and E2(z, t) as 

R(z, At) - (Ex(z, t + M)E2*(z, t + M)Ex*(z, t) 

X E2(z, 0). (19) 

According to Eqs. (15) and (19), we have 

R(z, 0) 
h(z) = 

/2(0) 
(20) 
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Note that the function R(z, At) is the autocorrelation 
function of the instantaneous mutual coherence of the two 
waves, i.e., 

R(z, At) = (Fix, t + At)F*(z, 0). (21) 

As the time delay A* approaches infinity, the two random 
variables F(z, t + At) and F(z, t) become uncorrelated. 
According to Eq. (21), we have 

R(z, ») = \(F(z, t))\2. (22) 

In other words, R(z, *) is the squared mutual coherence 
of the two waves. Using Eq. (18), we can express R(z, °°) 
explicitly. 

With Eq. (20), the problem of solving for the signal in- 
tensity is reduced to the problem of solving for the auto- 
correlation function of the instantaneous mutual coher- 
ence of the two waves. Using Eqs. (17) and (21), we 
obtain 

dR(z, AH 
dz 2   T  J .. 

At + Af')exp| — dAr'. 

(23) 

We define the Fourier transform of the function R(z, At) 
as 

R(z, t) = 2^ J R(z, At)exp(itAt)dAt. 

Using Eqs. (23) and (24), we obtain 

R(z, f) = A(0,f)exp 
i + e^f 

(24) 

(25) 

Given the boundary condition fl(0, At), we can obtain 
R(z, At) with Eqs. (24) and (25). 

Using Eqs. (10) and (11), the  boundary condition 
Ä(0, At) can be written as 

td>0: 

At>td>0 

_L 

Ä(0, AO = /,(O)/2(O)<exp[i0« + At + td) - id(t + At) 

- id(t + td) + i6(t)]). (26) 

The above expression involves the random phase 6(t) at 
four different times: t + At + td, t + At, t + td, and t. 
The temporal sequence of these times plays an important 
role in determining the explicit expression of the function 
R(0, At). As is shown in Fig. 2, there are four possible 
sequences for td > 0 and four possible sequences for td 

< 0. As an example, we consider one such sequence, the 
case At > td > 0. The random phase shift A6'(td) 
= 0(t + At + td) - dit + At) and the random phase 
shift A ff"(td) = 0(t + td) - 6{t) are over nonoverlapping 
time intervals, and therefore they are statistically inde- 
pendent. Thus we can simplify Eq. (26) as, for this par- 
ticular case, 

R(0,At) = Il(0)I2(0)(exV[iAe,(td)])(exTp[-iAff'(td))). 

(27) 

Using Eq. (12) and the assumption that the random phase 
shift Aft, St) over an arbitrarily given time period St has a 
Gaussian distribution, we obtain 

A(0,n = AW/^OJexpMAfl'U,,)2)^] 

x exv[-(Ar(td)2)/2] 

= /i(0)/2(0)exp(-Äü.^). (28) 

The boundary condition fl(0, At) for the other cases can 
be obtained similarly. The general result for the com- 
plete boundary condition can be written as 

td<0: 

0>td>At 

-L 
t+t<j t+At       t+At+t<j t+At+td        t+At t+td 

td>At>0 

t+At ,+,d        t+At+t<j t+At+td t+td 

0>At>td 

t+At 

t+At 

td>-At>0 

 \  

1 t+At+td       ,+,d 

0>-At>td 

t+td       t+At+td ' t+At 

-At>td>0 0>td>-At 

t+At       t+At+td l ,+td ,+,d ' t+At+td 

Fig. 2.   Eight possible time sequences of t + M + td , t + At. t + td, and t. 

t+At 
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Ä(O.At) 
[/,(0)/2(0)exp(-(Sü>|trf|> |tj 

[/,(0)/2(0)exp(-<MAt|)        I'd1 

«|At| 

> IAH 
_ (29) 

By use of Eqs. (17), (20), (24), (25), and (29), the signal in- 
tensity and the mutual coherence of the two waves can in 
general be obtained numerically. 

B.   Discussion 
In this subsection we discuss some general characteristics 
and some special cases that can be solved analytically. 
We first describe an interesting relationship between the 
signal intensity and the mutual coherence of the two 
waves. 

In general, the signal wave and the pump wave are 
partially coherent at the incidence plane. We can write 
the signal wave amplitude at the incidence plane as the 
sum of two terms, i.e., 

£,(0,t) = Eu(0,t) + Eu(0,t), (30) 

where the term £,c(0, t) is fully coherent with the pump 
wave at the incidence plane and the term £u(0, t) is to- 
tally incoherent with the pump wave at the incidence 
plane. This partition is unique. The two terms can be 
written as 

(F(0,r>) 
£i,«U) = -^==-£,(0,*), 

Vi2(«' 

(31) 

Eu(0,t) - £,(0, t) - ^== E2(0, t).       (32) 
Vi2(°) 

With Eqs. (30M32), we have separated the signal wave, 
before it enters the photorefractive medium, into two in- 
dependent wave components. One is fully coherent with 
the pump wave and the other is totally incoherent with 
the pump wave. According to Eqs. (7)-(9), the coupled- 
wave equations are linear equations of the signal-wave 
amplitude. Therefore these two signal-wave components 
will also propagate through the photorefractive medium 
coupling with the pump wave independently. The ampli- 
tudes of two signal-wave components throughout the pho- 
torefractive medium are denoted Eu(z, t) and Eu{z, t), 
respectively. The intensities of the two signal-wave com- 
ponents are denoted /,c(z) and /u(z), respectively. The 
autocorrelation function of the instantaneous mutual co- 
herence of the two signal-wave components with the 
pump wave are denoted R((z, At) and Rt(z, At), respec- 
tively.   Using Eqs. (31) and (32), we obtain 

(33) 7,(0) = Iu(0) + /u(0), 

Ä(0,At) = Äf(0,At) + Ä,(0,At). (34) 

Note that the ensemble averages of the cross-product 
terms in Eqs. (33) and (34) are all zero. According to 
their definitions, Äc(0, Ar) is a constant of the time delay 
At, whereas Ä((0, At) approaches zero as the time delay 
At goes to infinity. Thus, given the function Ä(0, At), we 
can obtain Äf(0, At) and fi,(0, At) as 

Ät(0,At) = fl(0,°°). (35) 

Ä,(0, At) = Ä(0, At) - Ä(0, oo). (36) 

The propagation of the signal wave component that is 
fully coherent with the pump wave at the incidence plane 
can be solved explicitly. The boundary condition is given 
by Äc(0, At) = //(.(0)/2(0). It is a constant of the time 
delay At, and its Fourier transform is a delta function. 
Using Eqs. (24) and (25), we obtain 

Re(z, At) = /lf(0)/2(0)exp(yz). (37) 

Note that the function Rr{z, At) is a constant of the time 
delay At at any position z. The signal-wave intensity 
can thus be expressed as 

Iu(z) = 7lc(0)exp(yz). (38) 

With Eqs. (37) and (38), we can prove that the absolute 
value of the normalized mutual coherence of the two 
waves is 1 throughout the photorefractive medium. The 
signal-wave amplitude can be written as Eie{z, t) 
= £,r(0, t - z/v)exp(yz/2). The signal intensity gain is 
the same as in the case in which the two waves are mono- 
chromatic waves. The normalized spectrum of the signal 
wave does not change in the two-wave mixing process and 
remains the same as the pump wave. Note that the 
propagation of the signal-wave component that is coher- 
ent with the pump wave is independent of the photore- 
fractive relaxation time T when the steady state is 
reached. 

The above analysis shows that the signal-wave compo- 
nent that is totally coherent with the pump wave at the 
incidence plane remains totally coherent with the pump 
wave throughout the photorefractive medium. In addi- 
tion, according to Eq. (18), the signal-wave component 
that is totally incoherent with the pump wave at the in- 
cidence plane remains totally incoherent with the pump 
wave throughout the photorefractive medium. There- 
fore, Eqs. (31)-(36) apply not only at the incidence plane 
but also throughout the photorefractive medium. 

Since the propagations of the two signal-wave compo- 
nents are independent of each other and since the propa- 
gation of the signal-wave component that is totally coher- 
ent with the pump wave can be easily determined, we 
now consider the propagation of the signal wave compo- 
nent that is totally incoherent with the pump wave. 

Without loss of generality, we consider the boundary 
condition given by Eq. (29). We assume that the time de- 
lay trf between the signal wave and the pump wave is 
much larger than the coherence length of the source laser 
wave so that the two waves are totally incoherent. Un- 
der this assumption, the boundary condition [Eq. (29)] 
can be simplified as 

Ä(0,At) = /1(0)/2(0)exp(-<Sü>|At|), 

and its Fourier transform is 

Ä(0,£) = /,(0)/2(0) 
1 Sw 

IT 6u>2 + ? 

(39) 

(40) 

The function Ä(0, f) has a Lorentzian shape. Its maxi- 
mum is Ä(0, 0) = /,(0)/2(0)/(ir<5a.). Its FWHM is 2<Sw, 
i.e., twice the bandwidth of the source laser wave. Gen- 
erally speaking, when the signal wave and the pump 
wave are incoherent, the boundary condition Ä(0, £) is a 
function of f with finite height and finite width: when the 
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signal wave and the pump wave are coherent, the bound- 
ary condition Ä(0, £) is a delta function of f 

We now describe some general characteristics of the 
case in which the two waves are totally incoherent. Look 
at the function expfyzfll + £2r2)] in Eq. (25). It is an in- 
creasing function of yz. According to Eqs. (24) and (25), 
both the function R(z, £) and the function R(z, At) are 
increasing functions of yz. Thus, according to Eq. (20), 
the signal intensity will be amplified even if the two 
waves are incoherent. The function exp[yz/(l + £2r2)] is 
a decreasing function of the photorefractive relaxation 
time T. According to Eqs. (20), (24), and (25), the signal 
intensity gain decreases as r increases. The function 
exp{yz/( 1 + £2T2)] is also a decreasing function of |(|. Its 
FWHM with respect to the argument £ is a decreasing 
function of yz. When yz *> In 2, the width is approxi- 
mately [In 2/( yz))]J2/r. According to Eqs. (24) and (25), 
the FWHM of the function R(z, At) with respect to the 
argument At increases as yz increases. In other words, 
the correlation time of the instantaneous mutual coher- 
ence of the two waves increases as the signal wave be- 
comes amplified. 

We further consider some special cases that can be 
solved analytically. 

First, we consider the case in which the photorefractive 
grating relaxation time constant is much shorter than the 
coherence time of the two interacting waves, i.e., Swr 
< 1. In this case, the width of the function fi(0, {) is 
much smaller than the width of the function exp[yz/(l 
+ £2T2)], i.e., 6<or<* [ln2/(4yz)]w. Note that 
[In 2/(4yz)]l/2 is of the order of unity even for a relatively 
large value of yz. Therefore, the function exp[yj/(l 
+ f2r2)] in Eqs. (24) and (25) can be replaced with 
exp(yz), i.e., r = 0.   This leads to 

(41) 

(42) 

R(z, At) = R(0,At)exp(yz), 

. 7,(z) = /!(0)exp(yz). 

The signal intensity gain is the same as in the case of the 
two waves' being totally coherent. The function R(z, At) 
retains its temporal profile while being amplified. In this 
case the photorefractive grating follows the fluctuation of 
the partially coherent optical waves instantaneously, i.e., 
Q(z, t) = £](z, t')E2*(z, t') according to Eq. (7), and 
the signal wave amplitude can be directly obtained from 
Eq. (8)as£,(z, t) = E:(Q,t - z/i/)exp(yz/2). Therefore 
the normalized spectrum of the signal wave does not 
change in the two-wave mixing process and does not have 
to be the same as the pump wave. This is in agreement 
with the fast response of the material. Since the signal 
intensity gain decreases as the photorefractive relaxation 
time T increases when the two waves are totally incoher- 
ent, the signal intensity gain when the two waves are to- 
tally incoherent will in general be smaller than when the 
two waves are totally coherent and the photorefractive re- 
laxation time T is not negligible. 

Second, we consider the case in which the photorefrac- 
tive grating relaxation time constant is much longer than 
the coherence time of the two interacting waves, i.e., 
Soar *> 1. In this case the width of the function Ä(0, |) is 
much larger than the width of the function exp[?z/(l 
+  £2T2)].   As a result, the boundary condition Ä(0, 0 in 

Eq. (25) can be replaced with Ä(0, 0) =/i(0)/2(0)/ 
(TT6W). When yz < I, the function exp(yz/(l + £2r2)] 
can be replaced with 1 + yzl(\ + £2T2).   This leads to 

yz       i   \At\\ 
R(z, At) = 7?(0, At) + -T— exp , (43) 

OUT T    / 

/lU) = /l(0)|i + £- (44) 

The signal intensity gam coefficient is yzHSatr) in the 
low-gain limit. The incremental change of the function 
R(z, At), i.e., the second term on the right-hand side of 
Eq. (43), has a FWHM of r In 2, which is much larger 
than the FWHM of the function Ä(0, At), i.e., In 2JSw. 
When yz > 1, the function exp[yz/(l + f2r2)] can be re- 
placed with exp[yz(l - £2T2)].   This leads to 

R(z, At) = 

Hz) = 

1    exp(yz) 

OUT   4ityz 

7,(0)exp(yz) 

■expl (45) 

(46) 
Su)r   4iryz 

In the high-gain limit, the signal intensity gain coefficient 
is close to yz, the same as in the case in which the two 
waves are totally coherent, whereas the signal intensity 
gain is at least SUIT times smaller than in the case in 
which the two waves are totally coherent. The temporal 
profile of the functionfi(z. At) is Gauaaian with a FWHM 
of 2 rjyz. Codirectional two-wave mixing with partially 
coherent waves was studied by Bogodaev et al. under the 
assumption that the amplitude of the photorefractive 
grating is temporally stationary and proportional to the 
mutual coherence of the two interacting waves, i.e., 
Q(z, t) = (F(z, t)), in the case 8ur*> l.7 Under the 
undepleted pump approximation, their results show that 
the signal wave does not become amplified at all when it 
is incoherent with the pump wave, whereas the signal in- 
tensity and the mutual coherence of the two waves are 
the same as those given by Eqs. (18) and (38) when the 
two waves are totally coherent. The assumption of tem- 
porally stationary photorefractive grating is valid when 
the amplification of the signal intensity due to a signal- 
wave component incoherent with the pump wave is negli- 
gible compared with that due to a signal-wave component 
that is coherent with the pump wave. 

C.   Simulations 
We now show some numerical results for the signal inten- 
sity gain using the boundary condition given by Eq. (29). 
In Fig. 3, we show the signal intensity gain as a function 
of the position z in the photorefractive medium for a given 
time delay td between the signal wave and the pump 
wave at the incidence plane and for five different values of 
the photorefractive grating relaxation time. The simula- 
tion parameters are interaction length L = 1.0 cm, index 
of refraction n = 2.3, photorefractive coupling coefficient 
y = 1.0 cm"1, source laser wave bandwidth 6<D 

= 2irxl.0 X 106 s"1, time delay td - 0.3 M». and five 
different values of the photorefractive grating relaxation 
time T = 0.0, 0.4, 1.0, 2.5, and » ^s. For the three finite 
cases, SUIT is of the order of unity.   According to Fig. 3, 
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the signal intensity gain increases as functions of z in the 
photorefractive medium for a given photorefractive relax- 
ation time r and increases as the photorefractive relax- 
ation time T decreases. The signal intensity is the sum of 
the intensities of the signal-wave components that are co- 
herent with the pump wave and of those incoherent with 
the pump wave. The intensity gain of the signal-wave 
component that is coherent with the pump wave is inde- 
pendent of the photorefractive relaxation time T. There- 
fore, according to Fig. 3, the intensity gain of the signal- 
wave component that is incoherent with the pump wave 
increases as the photorefractive relaxation time r de- 
creases. When the photorefractive relaxation time r is 
zero, the intensity gains of the two signal-wave compo- 
nents are equal. When the photorefractive relaxation 
time T is not zero, the intensity gain of the signal wave 
component that is incoherent with the pump wave is 
smaller than that of the signal wave component that is co- 
herent with the pump wave. 

In Fig. 4 we show the signal intensity gain at the exit 
plane as a function of the time delay td between the two 
waves at the incidence plane for five different values of 
the photorefractive grating relaxation time. The simula- 
tion parameters are the same as those of Fig. 3. Since 
the curves of the signal intensity gain versus the time de- 
lay ti are symmetric with respect to the axis when the 
time delay td is tero, we show only the curves for the posi- 
tive time delay td. We notice that the signal intensity 
gains are decreasing functions of the time delay td. For 
all cases, the signal intensity gains reach asymptotic val- 
ues when the time delay td is a couple of the coherence 
time of the source laser wave or larger. When Star is 
much larger than 1, there is no coupling between the two 
waves if the two waves are incoherent at the incidence 
plane owing to a large time delay (e.g., td> lpum Fig. 
4). When Sotr is of the order of unity or less, there is 
always coupling between the two waves, even if the two 
waves are completely incoherent at the incidence plane 
owing to a large time delay (e.g., td> lfis in Fig. 4). 
Also according to Fig. 4, the signal intensity gain in- 
creases as the photorefractive grating relaxation time de- 
creases. The increase of the signal intensity gain with 
the decrease of the photorefractive grating relaxation 

1.60 

l,(z) 
l,(0)    1.30 

0.4        0.6 
z(cm) 

Fig. 3. Signal intensity gam Ma function of the position in the 
photorefractive medium for a given time delay tj between the 
signal wave and the pump wave at the incidence plane and for 
five different values of the photorefractive grating relaxation 
time. 
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Fig. 4. Signal intensity gain at the exit plane as a function of 
the time delay td between the two waves at the incidence plane 
for five different values of the photorefractive grating relaxation 
time. 

time becomes more significant when the time delay td is a 
couple of the coherence time of the source laser wave or 
larger. The dependence of the signal intensity gain on 
the time delay t d between the two waves at the incidence 
plane can be easily understood as follows. Increasing the 
time delay td between the two waves increase« the rela- 
tive weight of the signal-wave component, which is inco- 
herent with the pump wave. This explains the decrease 
of the signal intensity gain. When the time delay td is a 
couple of the coherence time of the source laser wave, the 
signal wave becomes completely incoherent with the 
pump wave and the signal intensity gain reaches its 
asymptotic value. 

In this section the stochastic coupled-wave equations 
are reduced to nonstochatic differential equations, from 
which the signal intensity and the mutual coherence of 
the two waves can be obtained. The autocorrelation 
function of the instantaneous mutual coherence of the two 
waves at the incidence plane is found to be the necessary 
and sufficient boundary condition to determine the evolu- 
tion of the signal intensity through the two-wave mixing 
process. Our results indicate that both the signal-wave 
component that is coherent with the pump wave and the 
signal-wave component that is incoherent with the pump 
can become amplified while maintaining their respective 
mutual coherence properties with the pump wave. The 
intensity gain of the signal-wave component that is inco- 
herent with the pump wave depends on the photorefrac- 
tive relaxation time constant, whereas the signal-wave 
component that is coherent with the pump wave does not. 
The effect of linear absorption can be easily taken into ac- 
count 

4.  SIGNAL SPECTRUM 
In this section we solve for the signal spectrum. The sto- 
chastic coupled wave equations are rewritten into a series 
form, from which an asymptotic solution of the signal- 
wave spectrum can be obtained. 

Since the signal-wave amplitude Ex(z, t) is a station- 
ary random process, the signal spectrum denoted 
£„(z, u) can be mathematically denned as 
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Eu(z,a>)=~\     <£,(z, t)£,*(z, t + At)) 

x exp(-i(<u - (i>0)kt]d&t. (47) 

where {£1(2. t)Ex*(z, t + At)) as a function of At is the 
autocorrelation function of the signal wave amplitude 
£,(2, t). According to the Wiener-Khintchine theorem, 
EUU, <o)dw is the average signal intensity that is due to 
frequency components between w and w + dio. Since 
the signal-wave spectrum and the signal-wave autocorre- 
lation function are Fourier transform pairs, we can obtain 
the signal spectrum by solving for the signal-wave auto- 
correlation function (E^z, t)Ex*(z, t + At)). 

The coupled-wave equations (7M9) can be expanded 
into a series of equations. First, we write the signal- 
wave amplitude E\(z, t) into the summation of a series 
as 

E,(z, t) = £,<>(*, t) + En(z, t) + El2(z, t) + 
(48) 

Each summation term in Eq. (48) is determined by the 
boundary condition and the series expansion of the 
coupled wave equations (7)-(9) as will be shown by Eqs. 
(50M54). We then write the grating amplitude Q(z, t) 
into the summation of a series as 

Q(z, t) = Q,oU, t) + Quiz, 0 + Q«(*. 0 + ••• • 
(49) 

where Qy(.z, t) is the component due to Ey(z, t) and the 
pump wave £»(z, t). We do not expand the pump-wave 
amplitude £2(z, t), which is a constant in our nonde- 
pleted pump approximation. Each component of the 
grating amplitude in Eq. (49) is determined by 

r dQv(*' ° + Qv(z, t) = £v(z, t)E2*(z, t),   (50) 
at 

where the index./ = 0,1, 2  With each of the compo- 
nents determined this way, the grating amplitude will au- 
tomatically satisfy Eq. (6) or Eq. (7). Physically, this 
means that thejth-order term of the grating amplitude is 
generated by theyth-order term of the signal wave and 
the pump wave. The boundary conditions at the inci- 
dence plane for the components of the signal-wave ampli- 
tude in Eq. (48) are given by 

£,o(0,t) =£,(0,*), (51) 

£,,(0,0 = 0, (52) 

where j = 1,2    In this way the boundary conditions 
at the incidence plane for the signal-wave amplitude are 
also automatically satisfied. The zeroth-order term of 
the signal wave is assumed to pass through the photore- 
fractive medium without being affected by the photore- 
fractive grating, i.e., 

dEx0(z, t)       1 <?E,o(z, t) 
dz 

+ V dt 
= 0. (53) 

For j > 0, the jth order term of the signal wave is as- 
sumed to be generated by the pump wave reflection from 
the (j - l)th order term of the photorefractive grating, 

dEy(Z,  t 

(54) 

By summing both sides of Eq. (54) over; = 0,1, 2,..., we 
obtain Eq. (8). Therefore Eqs. (48)-(54) are the series ex- 
pansion form of the coupled-wave equations. 

Using Eq. (48), we can expand the signal-wave autocor- 
relation function <£,(*, t)Ex*(z, t + At)) into a series 
summation as 

(£,(2, 0£,*(z, t + At)) 

= (£,o(z, t)Ew'(z, t + At)) 

+ [(El0(z, t)Eu'(z, t + At)) 

+ (Eu(z, t)Ew*(z, t + At))] + ... .    (55) 

For example, the single product term [Elm 

x (z, t)£,„*(z, t + At)] belongs to the (m + n)th order 
term of the autocorrelation function (Ex(z, t) 
x E,*(z, t + At)). The product terms in Eq. (55) can 
be regrouped so that the autocorrelation function 
(Ex(z, t)Ex*(z, t + At» is expanded into a Taylor's se- 
ries of yz. 

The zeroth-order term of the Taylor series is 

(El0(z, t)El0*(z, t + At)) = /,(0)exp|-£Au.|At|j. 

(56) 

Equation (56) reflects that the Bource laaer wave has been 
assumed to have a Lorentzian line shape. The first-order 
term of the Taylor series contains two single-product 
terms.   These terms can be obtained from 

(En(z, t)El0*{z, t + At)) 

It'* 
x E2(z, t)Eio*(z, t + At))exp —- dAt',    (57) 

(El0(z, t)En*(z, t + At)) 

= <£„(z, t)Ex0*(z, t - At))'. (58) 

i.e., 

Using the boundary condition given by Eq. (52), we can 
show that both sides of Eq. (57) are zero at the incidence 
plane z = 0. Using the series expansion form of the 
coupled-wave equations, we can show that the first de- 
rivatives over the position z of both sides of Eq. (57) are 
equal. This proves the validity of Eq. (57). According to 
Eq. (57), the coefficient of the first-order term of the Tay- 
lor series is related to a one-layer integration of a fourth- 
order coherence function of the two wave amplitudes at 
the incidence plane. When the source laser wave is as- 
sumed to have only phase noise, the fourth-order coher- 
ence function in Eq. (57) can be obtained in the same way 
as we obtain the fourth-order coherence function Ä(0, At) 
given in Eq. (29). Its general expression is quite compli- 
cated. When the time delay td between the signal wave 
and the pump wave is further assumed to be much larger 
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than the coherence time of the source laser wave, the 
fourth-order coherence function in Eq. (57) can be ex- 
pressed as 

<£10(z, t + At')E2*(z, t + At')E2(z, t)El0*(z, t + M)) 

= /,(0)/2(0)exp --6<o(\At' - At\ + \Af\) .    (59) 

Using Eq. (59), we obtain 

<£10(z, t)En*(z, t + At)) + {Eu(z, t)El0*(z, t + AM) 

1+- 
6(0 T 

1 - exp - 
IA/ 

(60) 

In the case Smr < 1, Eq. (60) can be simplified as 

(E10(z, t)En'(z, t + At)) + (Eu(z, t)El0*(z, t + At)) 

= /,(0)expl~2 Su\At\\yz.    (61) 

In the case Sa>r *» 1, Eq. (60) can be simplified as 

(El0(z, t)Eu*(z, t + At)) + (En(z, 0£,o*(2- t + At)) 

= /,(0)exp -T S(o\At\ 
$(DT 

(62) 

According to Eqs. (56), (61), and (62), when the signal 
wave and the pump wave are independent at the inci- 
dence plane and the gain-length product yz is small com- 
pared with unity, the normalized spectrum of the signal 
wave does not change in the cases 6o>r< 1 and Star 
*>  1. 

In general, there are./' + 1 single product terms in the 
>th-order term of the Taylor series. The coefficient of the 
jth-order term of the Taylor series is related to j -level in- 
tegrations of (j + l)th-order coherence functions of the 
two wave amplitudes at the incidence plane. The coher- 
ence functions of the two wave amplitudes at the inci- 
dence plane can be obtained from the boundary conditions 
in the same way as we obtain the fourth-order coherence 
function R{0, At) given in Eq. (29). As we have shown, 
the signal-wave intensity increases as exp(>z). Since the 
signal-wave intensity is equal to the autocorrelation func- 
tion <£,(z, t)Ei*(z, t + At)) at the time delay At = 0, 
we expect the correlation function to increase as exp(-yz) 
for the time delay At # 0 as well. Therefore the number 
of orders in the Taylor's series that is needed to achieve a 
certain accuracy increases quickly as yz increases. The 
series expansion method works most efficiently when yz 
is close to 1 or smaller. Fortunately, yz is usually small 
for high-speed photorefractive materials. 

For example, when yz is small compared with unity, 
only the first two orders of the Taylor's series need to be 
taken into account. In Fig. 5 we show the first two orders 
of the Taylor's series separately as a function of the time 
delay At. Both functions are normalized by their respec- 
tive maximum values. The time delay td between the 
two waves at the incidence plane is assumed to be much 
larger than the coherence time of the source laser wave. 
In this particular case, according to Eqs. (55) and (59), the 
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Fig. 5. First two orders of the Taylor's series of the autocorre- 
lation function (£|(r, £)£,♦(*, t + Ar» as a function of the time 
delay Af. 

maximum value of the zeroth-order term is /i(0), and the 
maximum value of the first-order term is yzIi(0)/(Swr 
+ 1). The bandwidth of the source laser wave is as- 
sumed to be 1 MHz. The photorefractive relaxation time 
is assumed to be 1 pa. According to Fig. 5, the widths of 
the first two orders of the autocorrelation function are not 
equal. The bandwidth of the signal wave will become 
narrower as the signal wave propagates through the pho- 
torefractive medium. 

In this section we have presented an asymptotic solu- 
tion of the signal spectrum. The solution is relatively 
simple in the low-gain limit. When the coherence time of 
the source laser wave is comparable with the photorefrac- 
tive relaxation time, the signal wave spectrum will be- 
come narrower as the signal wave becomes amplified. 
When the coherence time of the source laser wave is much 
longer or much shorter than the photorefractive relax- 
ation time, the signal wave spectrum remains unchanged. 

5.   CONCLUSIONS 
We have investigated codirectional two-wave mixing with 
partially coherent waves in high-speed photorefractive 
media. When the spectral bandwidth of the optical 
waves is close to the speed of the photorefractive media, 
i.e., &or is of the order of unity, the photoinduced index 
grating will fluctuate with the amplitudes of the optical 
waves. The stochastic coupled-wave equations are 
Bolved in the nondepleted pump region with the assump- 
tion that the pump wave has only phase noise. Results 
for the evolution of the signal intensity, the mutual coher- 
ence of the two waves, and the signal spectrum are ob- 
tained. We found that the two-wave mixing process in 
high-speed photorefractive media is significantly different 
from that in low-speed photorefractive media. In the 
low-speed case we need to know only the intensities and 
the mutual coherence of the two waves at the incidence 
plane as the boundary condition to determine the evolu- 
tion of the signal wave intensity, whereas in the high- 
speed case we need to know the autocorrelation function 
of the instantaneous mutual coherence of the two waves 
at the incidence plane. In the low-speed case a partial 
coherence between the two waves at the incidence plane 
is necessary for two-wave mixing and signal-wave ampli- 
fication to occur, whereas in the high-speed case two-wave 
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mixing and signal-wave amplification will occur even if 
the two optical waves are incoherent at the incidence 
plane. In the low-speed case the two-wave mixing is in- 
dependent of the photorefractive relaxation time con- 
stant, whereas, in the high-speed case the signal intensity 
gain increases as the photorefractive grating relaxation 
time decreases when the two optical waves are not fully 
coherent at the incidence plane. The evolution of the sig- 
nal spectrum is also much more complicated in the high- 
speed case than in the low-speed case. In general, the 
signal-wave bandwidth changes as a result of the two- 
waving process. The analysis in the high-speed case also 
provides a better understanding of the limitation of the 
assumptions previously made in analyzing the low-speed 

case. 
In our analysis the photorefractive medium has been 

assumed to be of purely diffusive type, which means that 
the coupling constant y is a real number. With the pres- 
ence of the photovoltaic effect or external electric field in 
the photorefractive medium, the coupling constant y will 
be a complex number. The latter case can be analyzed 
similarly to the former. But the mathematical treat- 
ments involved will be slightly more complicated. The 
method used in our analysis can also be used to study 
stimulated Raman scattering with broadband light. 
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We investigate contradirectional two-wave mixing with partially coherent waves in photorefractive crystals. 
By use of a statistical theory on linear systems, a general formulation of the problem in the space and fre- 
quency domain is derived and implemented numerically. We obtain results on beam intensity and mutual 
coherence. The results on the enhancement of mutual coherence are compared with previous theoretical re- 
sults on simpler cases and with experimental measurements. Excellent agreements are achieved. The re- 
sults also indicate that the effective interaction length can be significantly longer than the coherence length of 
the waves.   © 1997 Optical Society of America (S0740-3224(97X>1906-U 

1.   INTRODUCTION 
Two-wave mixing in photorefractive crystals has been in- 
vestigated extensively for many applications including 
image amplification, laser-beam cleanup, spatial light 
modulators, thresholding, and power-limiting devices.1,2 

Most of the theoretical works in this area are based on 
wave-mixing with mutually coherent waves.1,2 However, 
in some applications, such as self-pumped and mutually 
pumped phase-conjugate mirrors3"6 and photorefractive 
filters,7 the effect of partial temporal coherence in a two- 
wave-mixing process cannot be ignored. Two-wave mix- 
ing with partially coherent waves has been studied previ- 
ously for the case of transmission-grating interaction.8 

In the case of transmission-grating interaction the optical 
path difference between the two interacting waves re- 
mains approximately the same as the two waves propa- 
gating codirectionally through the photorefractive me- 
dium, especially when the incident angles of the two 
waves are close to each other.9 In the case of reflection- 
grating interaction the optical path difference between 
the two interacting waves varies significantly as the two 
waves propagate contradirectionally through the photore- 
fractive medium. Thus for the case of transmission- 
grating interaction, only one free variable for the position 
is needed to describe in a self-consistent way the second- 
order statistical properties of the two optical waves, i.e., 
their intensities and mutual coherence, while at least two 
free variables, one for the position and one for the optical 
path difference, will be needed for the case of reflection- 
grating interaction. Another difficulty in studying the 
reflection-grating interaction of partially coherent waves 
is to find a way to incorporate the complete boundary con- 
ditions into the theoretical formulation as a result of the 
two-point boundary-value problem. In such a problem a 
complete set of boundary conditions includes both the 

second-order self-statistical properties (e.g., self- 
coherence) of each wave at its entrance boundary and the 
second-order mutual statistical properties (e.g., mutual 
coherence) of the two waves at their respective entrance 
boundaries. In a recent work we provided a theoretical 
formulation of the problem in the space and time domain 
for the reflection-grating interaction in the nondepleted- 
pump regime.9 By using the nondepleted-pump approxi- 
mation, we reduced the two-point boundary-value prob- 
lem to an initial value problem. In this paper we present 
a general formulation of the problem in the space and fre- 
quency domain based on the standard statistical theory 
on linear systems. The general formulation is also 
implemented numerically. Specifically, we investigate 
the signal-intensity gain and the mutual coherence in the 
contradirectional wave mixing of two partially coherent 
waves. Contrary to conventional belief, we discover that 
the effective interaction length (or grating length) can be 
significantly longer than the coherence length of the inci- 
dent waves. The results are also compared with previous 
theoretical results on simpler cases and with experimen- 
tal measurements. 

2.   THEORETICAL MODEL 
Photorefractive two-wave mixing is a nonlinear optical 
process. Because of the mutual coherence of the two 
waves, a dynamic holographic grating is formed in the 
medium. Its position and index profile are neariy sta- 
tionary under the condition of a cw illumination. Both 
waves are scattered into each other by the presence of 
this index grating. Scattering of partially coherent 
waves by a stationary grating can be modeled with a sta- 
tistical theory on linear systems.10 An iterative proce- 
dure can subsequently be devised to obtain the final pho- 
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torefractive grating profile from an initially arbitrary 
grating profile. 

As is shown in Fig. 1, two counter propagating waves 
with partial coherence enter a photorefractive medium at 
z = 0 and z = L, respectively. The electric field in the 
photorefractive medium can be written as 

E(z, t) = E,(z, nexp(-i<iV + 'k0z) 

+ E2(z, nexp(-i<V - «k0z). (D 

where w0 is the center frequency of the two partially co- 
herent waves, ko = nw0/c is the corresponding wave vec- 
tor, and n is the refractive index of the photorefractive 
medium. Reflecting the partial coherence, E,(z, t) and 
E2(z, t) are stationary random variables. They repre- 
sent the random fluctuation of the amplitudes of the two 
waves. For the convenience of our later discussion we 
will now briefly describe some notations and definitions 
for the second-order statistical properties of the two opti- 
cal  waves.     Let  Yu(z, r) - <E,(z, /,)E,*(z, t2))   and 
rM(z, T)-<EJ(Z, f|)E2'U. *2» 

denote the in- 
coherence functions of E,(z, t^ and E,(z, *,), respec- 
tively, and rI2U, r) - <E,(z, f,)E2*(z, *2)> be the 
mutual-coherence function between E,(z, (,) and 
E2(z, t2), where r = tx - t2 is the time delay and <) 
means ensemble average. Let Eu(z, Aw) and 
EM(z, Aw) denote the self-spectral-density functions of 
E,(z, t) and E2(z, t), respectively, and E^!, z2, Aw) 
be the cross-spectral-density function between E,(z!, t) 
and E-iUt, t). The spectral-density functions and the 
corresponding coherence functions are Fourier-transform 
pairs, i.e., 

r"ii(*. T) =      Eu(z, Aw)exp(-iAwr)dAw, 

T^z, T) =      E^z, Aw)exp(-iAwr)dAw, 

r12(z 
•-/ 

Ei2(z, z, Aw)exp(-iAwr)dAw, 

(2) 

(3) 

(4) 

E,(I-0.D 

Hij(X.») 

Ha(l.<o)    "*— 

— H„(z.o>) 

 ». Hii(l,o>) 

Signal 
pump 

Ej(z-L.l) 

z •0 z«L 

Fig. 1. Two-wave mixing in photorefractive crystals modeled as 
a linear system with the signal-wave entrance plane and the 
pump-wave entrance plane as two input planes and any arbi- 
trary plane inbetween as the output plane. 

where Aw = w - w0, with w being a general frequency 
component of the waves. With the above notations and 
relations the intensity of the two waves can be expressed 

(5) 7,(z) = r,,(z,0) =      E,,(z, Aw)dAw 

72(z) - f^z.O) E22(z, Aw)dAw, (6) 

and the mutual coherence of the two waves can be ex- 
pressed as 

r12(z, o) = JE, 2(z, z, Aw)dAw. (7) 

With these equations the intensity of the waves as well as 
the mutual coherence can be obtained as soon as the 
spectral-density functions are obtained. In what follows 
we will derive the Bpectral-density functions by using the 
statistical approach. 

Using the above notations and definitions, we now be- 
gin our discussion on the photorefractive interaction. In- 
side the photorefractive medium, a dynamic index grating 
is generated.   It can be written as 

Sn = -i - — 
2 w0 

Q(z. t) 
I0(z) 

exp(2ik0z) + c.c. (8) 

where Q(z, t) is a measure of the index grating, y is the 
intensity coupling coefficient, and 70(z) = 7j(z) + 72(z)is 
the total intensity at position z. For the purpose of our 
discussion we will call E, the signal wave and E2 the 
pump wave. Thus for a photorefractive grating with a 
positive r, the signal wave E, can be amplified. If the 
photorefractive effect is based purely on carrier diffusion 
(e.g., BaTi03.) the dynamics of the index grating is de- 
scribed by the following equation: 

Tph 
<?Q(z, t) 

at 
+ Q(z, t) = E,(z, t)E2'(z, t), (9) 

where rph is the relaxation-time constant. By virtue of 
photoexcitations, photorefractive processes are usually 
slow at low intensities. It is reasonable to assume that 
the coherence time Sw~l of the two partially coherent 
waves is much smaller than the relaxation time rph of the 
photorefractive medium, i.e., <SwTph *> 1. Since E,(z, t) 
and E2(z, t) are stationary random variables, we can 
make the following approximation (see Appendix A) : 

Q(z, t) = (Q(z, o> = r12(z, 0). (10) 

In other words, two partially coherent waves with their 
complex amplitudes fluctuating randomly with time can 
actually write a stationary grating in a photorefractive 
medium under the appropriate conditions. For simplic- 
ity we will denote Q(z, t) with Q(z) from now on. Note 
that Q(z) is also the mutual coherence of the two waves 
at position z. We note that the approximation is also 
valid when <Swrph < 1. 

Given arbitrary functions of Q(z) and /0(z), Eq. (8) 
yields an index grating. The propagation of a monochro- 
matic wave through such an index grating can be de- 
scribed by the coupled wave equations. The coupled 
monochromatic waves can be written as 
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E = Ei(z, w)exp(-«w< + ikz) 

+ E2(z, w)exp(-tw« - ikz), (11) 

where E( and E2 are the amplitudes of the monochro- 
matic components, w is the optical wave frequency, and 
k = nw/c is the optical wave vector. The coupled wave 
equations can be written as 

<9E,(z, w) 
Tz 

«?E2(Z,  ü>) 

Tz 

2/oU) 
Q(z)E2(z, w)exp(-2iAkz) 

^E,(2,   w), (12) 

2/0(* 
Q*(z)E,(z, w)exp(2iAkz) 

f   - E2(2,  w). (13) 

where Ak = k - k0 is the phase mismatch between the 
optical waves and the index grating and a is the intensity 
absorption coefficient. With sufficient boundary condi- 
tions, Eqs. (12) and (13) can be solved either analytically 
in some special cases or numerically in general. When 
the boundary conditions are Ej(z = 0, w) = 1 and E2(z 
= L, w) = 0, the solutions (output) are denoted as 
E,(z, w) = HnU, w) and E2(_z, w) = H,2(z, w). When 
the boundary conditions are E,(z = 0, w) = 0 and E2(z 
= L, w) = 1, the solutions (output) are denoted as 
E^z, w) = H21(z, w) and E2(z, w) = HM(z, w). As a 
linear system, the general solutions are linear combina- 
tions of Hu, Hi2, HJI , and H^. 

In each of the iterations an arbitrary stationary index 
grating can be considered as a linear system. Referring 
to Fig. 1, we consider a given stationary index grating in 
the photorefractive medium as a linear system with the 
optical waves at the boundary planes z = 0 and z = L as 
the input and the optical waves at an arbitrary plane z as 
the output. According to the theory on the statistical 
properties of linear systems, the second-order statistical 
properties of the optical waves at the output plane can be 
expressed in terms of the second-order statistical proper- 
ties of the optical waves at the input planes and the fre- 
quency response of the linear syBtem. To be specific, the 
input at the z = 0 plane is E,(z = 0, t), the input at 
z = L plane is E2(z - L, t), and the outputs at the z 
plane are E,(z, t) and E^z, t). The frequency response 
of this linear system can be expressed in terms of the so- 
lutions of Eqs. (12) and (13). With the notations de- 
scribed in the previous paragraph, the frequency re- 
sponses from the input E^z = 0, t) to the outputs 
E,(z, t) andEj(z, t) are 

H|,'(z, a») = H„(z, w)exp(JAkz), 

H,2'(z, w) = H12(z, w)exp(-iAkz), 

(14) 

(15) 

respectively. Similarly, the frequency responses from 
the input E^z = L, t) to the outputs E,(z, t) and 
E2(z, t) are 

H21'(z, w) = H2,(z, w)exp(iAkL)exp(»Akz),       (16) 

H22'(z, w) = H^z, w)exp(iAkL)exp(-iAkz),   (17) 

respectively. The additional phase terms in Eqs. (14)- 
(17) account for the difference Ak = k - k0 owing to a fi- 
nite Aw = a) - w0. With these spectral-response func- 
tions we can express the spectral-density functions of the 
two outputs E,(z, t) andE2(z, t) in terms of the spectral- 
density functions of the two inputs E^z = 0, t) and 
E2(z = L, t). Thus, according to their definitions and 
Eqs. (14)-(17), we obtain 

E„(z, Aw) = H„(z, w)H„*(z, w)E„(z = 0, Aw) 

+ H2,(z, w)H2i*(z, w)EM(z = L, Aw) 

+ H„(z, w)H2i*(z, w) 

x E12(z = 0, z = L, Aw)exp(-JAkL) 

+ H2i(z, w)Hu*(z, w) 

x [E,2(z = 0, z = L, Aw) 

x exp(-JAkL)]», (18) 

E22(z, Aw) = H12(z, w)H,2*(z, w)E„(z = 0, Aw) 

+ HMU, W)H22»(Z, a,)E^z = L, Aw) 

+ H12(z, w)HM*(z, w) 

x Ei2(z = 0, z = L, Aw)exp(-«AkL) 

+ H^z, w)H,2»(z, w) 

x [E12(z = 0, z = L, Aw) 

x exp(-iAkL)]\ (19) 

Ei2(z, z, Aw) = exp(i2Akz){H,i(z, w)H,2»(z, w) 

x E„(z = 0, Aw) 

+ H2j(z, wJH^z, W) 

X En(z = L, Aw) 

+ H„(z, UJHJJV:, w) 

x E12(z = 0, z = L, Aw) 

x exp(-iAkL) + H21(z, w)H12*(z, w) 

x [EI2(z = 0, z = L, Aw) 

x exp(-iAkL)]*}. (20) 

Note that the spectral-density functions En(z = 0, Aw), 
EM(z = L, Aw), and E12(zi = 0, z2 = L, Aw) of the two 
inputs E,(z = 0, t) and E2(z = L, t) are given as the 
boundary conditions. 

Two physical processes happen simultaneously during 
two-wave mixing in a photorefractive medium. First, the 
two optical waves propagate through the photorefractive 
medium while being scattered into each other by the in- 
dex grating. Second, the scattered waves modify the in- 
dex grating through the photorefractive effect until a 
steady state is reached. We have provided above a math- 
ematical model that describes these two physical pro- 
cesses separately. A steady state of the two-wave mixing 
in the photorefractive medium is reached when the two 
optical waves scattered by the photorefractive grating can 
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exactly sustain the same photorefractive grating. A 
steady-state solution of the two-wave mixing in a photo- 
refractive medium can thus be obtained by use of the 
mathematical model described above through an iterative 
procedure.   The procedure is outlined as follows: 

Step   1:   Give   an   initial   guess   on   the   function 
Q(z)//0(«>- 

Step 2: Solve Eqs. (12) and (13) for the functions 
H,j(z, w) (i,j = 1.2) with the function Q(z)//0(z) pro- 
vided in the last step. 

Step 3: Obtain the spectral-density functions 
E,,(z, Aw), E22(z, Aw), and E12(z, z. Aw) by use of Eqs. 
(18)-(20). 

Step 4: Obtain /,(z), /2(z), Q(z). and Q(z)//0(z) by 
use of Eqs. (5), (6), (7), and (10). 

Step 5: Compare the new version of the index grating 
Q(z)//0(z) and the previous version. If they are close 
within a certain accuracy requirement, the solution has 
been obtained. Otherwise, the iteration continues by use 
of the new version of the index grating. 

To determine the boundary conditions, we assume that 
both the input optical waves are derived from the same 
laser source. If the source laser wave has a Gaussian 
line shape with a FWHM linewidth of <5w, then the nor- 
malized spectral-density function of the source laser wave 
can be written as 

EM(Aw) = 
4(ir In 2) 1/2 

Sw 
exp 2(ln2)u2 

Aw 
So) 

(21) 

Taking ß as the incident-intensity ratio Ix(z = 0)//2(z 
= L) of the two optical waves at their respective en- 
trance boundary planes, we obtain the boundary condi- 
tions as 

E„(z = 0, Aw) = /3E„(Aw), (22) 

E22(z = 0, Aw) = E„(Aw), (23) 

E,2(Z! = 0, z2 = L, Aw) = jßEJbwtexpi-ilioL) 

x exp(-iutd), (24) 

where td is the time delay between the optical waves 
when they reach their respective entrance planes. In de- 
riving the above boundary conditions, we have assumed 
that the laser source has a Gaussian line shape. There is 
no loss of generality in this assumption. Similar results 
can be obtained with a different line shape. 

This completes the general formulation to model con- 
tradirectional two-wave mixing in photorefractive crys- 
tals. 

3.   DISCUSSIONS AND SIMULATIONS 
To clarify the complicated formulation described above, 
we consider some simple cases first before presenting the 
numerical and experimental results. 

In the absence of coupling (y = 0) in a lossless medium 
(a = 0) with ß = 1 the above formulation describes the 
interference of two counterpropagating optical waves in a 

dielectric medium,    in this case it takes only one itera- 
tion to obtain the solution, which is 

E12(z, z, Aw) = Es,(Awlexp(-jkLi 

x exp(-iw^)exp(2tAkz) (25) 

Fourier transforming the above equation over w and tak- 
ing into account the extra phase term exp(2ikoZ) resulted 
from the definition of E^z, t) and E2(z, t) in Eq. (1), we 
obtain the mutual coherence of the two waves as a func- 
tion of position z, 

r12(z, r) = r, T + t 
nL - 2nz\ 

|exp(-jw0<rf), 

(26) 

where T,( r) is the normalized self-coherence function of 
the source laser wave and n is the index of refraction of 
the medium. The result has been well established in the 
literature. This example can also help us see more 
clearly the subtle contribution of the phase terms in the 
above formulation. In our definition, td = 0 if z = L/2 is 
the plane of zero path difference. 

When the coherence time <Sw~' is much larger than the 
time delay involved in the above formulation, i.e., 6<otd 

<* 1 and SwnL/c < 1, the normalized spectral-density 
function of the source laser wave can be written as 
E„(w) = Äw - w0). From the above formulation we 
can obtain the set of equations governing the intensities 
of the two optical waves, 

n'. = y dz'1" r/,+/t 

d /,/2 

dz'1     r/, + /2 

- a/, 

+ a/,. 

(27) 

(28) 

These two equations are exactly the same as those ob- 
tained for two-wave mixing of monochromatic waves. 
We note that Sott d < 1 is a condition for partially coher- 
ent waves to be treated as monochromatic waves in con- 
tradirectional two-wave mixing in a photorefractive me- 
dium. We also recall that the upper limit on the 
coherence time, i.e., <$WTPI, *> 1, still needs to be satisfied 
to reach Eqs. (27) and (28) from the above general formu- 
lation. This is the main difference between the results of 
Eqs. (27) and (28) in this paper and those obtained di- 
rectly for monochromatic waves. Note that we did not 
use the iterative procedure in obtaining Eqs. (27) and 
(28). The complete boundary conditions for Eqs. (27) and 
(28) are simply /,(z = 0) and l2(z = L). 

We now use the above general formulation to obtain 
the solution in the nondepleted-pump regime (for 
y # 0), which has been obtained previously by a different 
method. Using Eqs. (12) and (13) and the following three 
definitions, 

E„(z, Aw) = (E,(z, w)E,*(z, w)>. (29) 

EM(z, Aw) = (E2(z, w)E2»(z, w)), (30) 

E,2(z, z. Aw) = (E,(z, w)E2*(z, w))exp(2iAkz), 
(31) 

we can obtain a set of equations governing the propaga- 
tion of the spectral-density functions as 
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dz *-lo(Z) 

+ Q»(z)E12(z, 2. Aw)] 

- aE„(z, Aw), (32) 

dE22(Z' A<J) = —L-[Q(*)E12*(r. z, Aw) 
<?z 2/0U) 

+ Q*(z)E12(z,z, Aw)] 

+ aE22(z, Aw), (33) 

*E"(2' Z' *M)  = 2lAkE12(z, z. Aw) + 5^- Q(i) 

x [E„(z, Aw) + E^z, Aw)] 

- aE12(z, z, Aw). (34) 

E,(z, w) and E2(z, w) in Eqs. (29)-(31) are related to the 
Fourier-transform coefficients of the two optical waves as 
denned in Eq. (11). Strictly speaking, a stationary ran- 
dom process cannot be Fourier transformed over the time 
variable t. However, we can truncate it into a finite du- 
ration T and Fourier transform the truncated process. 
After that, we can first obtain a set of equations similar to 
Eqs. (32W34) for the truncated process, then let T go to 
infinity to obtain Eqs. (32M34). This is a standard pro- 
cedure in statistical optics.10 Fourier transforming the 
above relation over Aw, we obtain a set of equations gov- 
erning the propagation of the self and mutual coherence 
of the two optical waves as 

<?r12(z, T) _ _ 2n <?r12(z, r)       y T12(z, 0) 
"dz c dr 2   l\ + /2 

x [r„(z, r) + r22(z, T)], (35) 

c?r„(z, T)    y r,2(z, o) 
dz 2  /, +/2 

rrv(z.O) 

rv(*. -T) 

+ -■ 2    /, + /a 

- arn(z, T), 

ri2(z, T) 

(36) 

<?rj2(z, T)    y rt2(z, Q) 
—37— =2 77T7rrij(2!   T) 

y r»*(», o) „ 
+ 2-^TTrri2(z,T) 

+ ar22(z, r). (37) 

When there is no absorption in the photorefractive me- 
dium (i.e., a = 0), we can obtain, from Eqs. (36) and (37), 

-i tr„U, r) - rM(z, T)] = 0. (38) 
dZ 

Further, letting r = 0 in Eq. (38), we obtain 

^-[/,(z) -/2(z)] = 0. (39) 
oz 

Equation (39) shows that, when there is no absorption in 
the photorefractive medium, the intensity difference be- 
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tween the signal wave and the pump wave is a constant of 
integration (conservation of power flow). 

Note that, although Eqs. (35)-(37) are general and self- 
consistent, they contain only the mutual coherence of the 
two optical waves at the same locations. They are not 
compatible with the kind of boundary conditions as given 
by Eq. (24), which gives the mutual statistical properties 
of the two waves at two different points in space. There- 
fore they are useful only in the nondepleted-pump regime, 
where we can assume that the pump wave passes through 
the photorefractive medium without changing its statisti- 
cal properties. Under this assumption we can obtain 
from Eqs. (22)-(24) the self- and mutual-coherence func- 
tions of the two waves at the signal-wave entrance bound- 
ary plane (z = 0) as 

r,2(z = 0, T) - V/Jr„(T + Ä)exp(-iw0Ä), 

r„(z = 0, T) - ßTa(T), 

rH(z = o, r) - rjr), 

(40) 

(41) 

(42) 

where 6t = td + nL/c is the time delay between the two 
optical waves at the signal-wave entrance plane and 

r„(T) = exp 
SlDT 

4(ln2)w 

2\ 

(43) 

is the coherence function of the source laser wave. We 
can use Eqs. (40M42) as the boundary conditions and in- 
tegrate Eqs. (35M37). 

Equations (35M37) are simple not only in the sense 
that they can be implemented easily numerically, but also 
that they can be used to obtain approximate analytical so- 
lutions to some special cases within the nondepleted re- 
gime.   One such case is that the coherence length of the 
source laser wave is much longer than the two-wave- 
mixing interaction length and the coupling constant is 
large.   This occurs when we use a multimode argon laser 
and a KNb03:Co crystal for the two-wave-mixing experi- 
ment.   In this case we can neglect the term that contains 
the partial derivative on r in Eq. (35) and reduce the set of 
partial differential equations, i.e., Eqs. (35)-(37), to a set 
of ordinary differential equations that can be solved ana- 
lytically  under  the  nondepleted-pump  approximation. 
Remember that Eq. (35) is derived directly from Eq. (34). 
We can see from Eq. (34) that the approximation of ne- 
glecting the term that contains the partial derivative on r 
in Eq. (35) implies that the wave-vector difference Ak of 
the different frequency components of the two partially 
coherent waves are negligible with respect to the thick- 
ness  of the  photorefractive  medium  (i.e.,  AkL < 1). 
Similar approximation has been made previously by Sax- 
ena et al. in the study of multiple-beam interaction hy 
transmission gratings in the photorefractive media. 
Therefore under the nondepleted-pump approximation 
and the approximation of AkL «* 1 the signal-wave inten- 
sity gain and the normalized mutual coherence of the two 
waves can be obtained as 

h(z) 
/,(0) 

ru(z, o)    r12(o,o)rv(o,o) 
r„(0,0)     r^o.ojr^o.o) 
x [exp(y*> - l]exp(-orz) + exp(-az),      (44) 



ri2(z) 

r12(z, 0) 
[ru(z,o)rM(z,o)] 1/2 T,2*(0,0) 

r,2(o,o) 

l 

[1 - exp(-yz)] + 
r„(0,0)r22(0, o) 

r12
2(0,o) 

1/2' (45) 

exp( - yz) 

In most photorefractive crystals with exp[(?- a)z) ä> 1 
the signal-intensity gain is affected primarily by 
(r _ a) We also note that the normalized mutual co- 
herence of the two waves is affected only by the photore- 
fractive coupling constant y. 

As a comparison of the general formulation, the simpli- 
fied formulation and the approximate analytical solu- 
tions, we show in Figs. 2 and 3 the signal-intensity gain 
and the normalized mutual coherence of the two waves at 
the signal-wave exit plane (z = L) as a function of the op- 
tical path difference between the two optical waves at the 
signal-wave entrance plane (z = 0). The parameters 
are y = 3.0 cm"1, a = 0.0 cm"1, n = 2.3, L = 0.72 cm, 
and 8u> = lit x 1.8 GHz, and ß = 10-4. These are typi- 
cal parameters in our experiment when we use a multi- 
mode argon laser and a KNb03:Co crystal to implement 
the two-wave-mixing experiment. In this case the coher- 
ence length of the source laser wave is much longer than 
the thickness of the photorefractive medium. The gen- 
eral formulation and the simplified formulation produce 
the same results within the numerical accuracy in the 
nondepleted regime. The results of these two formula- 
tions are represented by the dashed curves in Figs. 2 and 
3. We notice that the approximate analytical solution re- 
tains the major characteristics of the exact solution and 
provides a good understanding of the interaction. The 
results of the approximate analytical solution are repre- 
sented by the solid curves in the figures. Note that the 
curves obtained from the approximate analytical solution 
are symmetric about z0 = 0 owing to the approximation 
of neglecting the partial derivative over T in Eq. (35), 
while the curves obtained from the general formulation 
are shifted to the right side (see Figs. 2 and 3). Here, 
z0 is defined as the path difference. The difference be- 
tween the results of the approximate analytical solution 
and those of the general formulation will decrease as the 
ratio between the coherence length of two waves and the 
thickness of the photorefractive medium increases. 

Now let us consider the case of the depleted pump. 
Numerical simulation with the general formulation is the 
only means to analyze this case. We first consider the 
case in which the coherence length of the source laser 
wave is finite but much longer than the thickness of the 
photorefractive medium. Again, we use the following set 
of parameters: y - 3.0 cm"1, a ™ 0.0 cm"1, n = 2.3, 
L = 0.72 cm, and Sw = Iti X 1.8 GHz. The solid 
curves in Fig. 4 show the signal intensity I,(z), the pump 
intensity /2(z), and the normalized mutual coherence 
yiz) = Tl2(z, 0)/[rn(z, Ojr^z, 0)]1* as functions of the 
position z in the photorefractive medium. The optical 
path difference between the signal wave and the pump 
wave at the signal-wave entrance boundary (z = 0) is 
chosen to be zero. The incidence intensity ratio ß of the 
two waves is chosen to be one. We also show in Fig. 4 
with dashed curves the signal intensity /,(z) and the 

pump intensity l2(z) for two-wave mixing with monochro- 
matic waves for the purpose of comparison. We notice 
that the results of two-wave mixing with partially coher- 
ent waves are very close to those of two-wave mixing with 
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Fig. 2. Signal-wave intensity gain as a function of the optical- 
path difference at the signal-wave entrance plane in the 
nondepleted-pump regime. The dashed curve is the numerical 
solution.   The solid curve is the approximate analytical solution. 
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Fig. 3. Mutual coherence of the two waves at the eignal-wave 
exit plane as a function of the optical path difference at the 
signal-wave entrance plane in the nondepleted-pump regime. 
The daahed curve ia the numerical solution. The aolid curve is 
the approximate analytical solution. 

I    1 

Fig. 4. Signal intensity, pump intensity, and the normalized 
mutual coherence as a function of position z in the photoretrac- 
tive medium for partially coherent waves (solid curves) and 
monochromatic wavea (daahed curves). 
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monochromatic waves when the optical path difference of 
the two waves is small compared with the coherence 
length of the source laser wave. The effect of partial co- 
herence of the two waves in this case is significant only 
for a large optical path difference of the two waves. We 
show the signal-intensity gain in Fig. 5(a) and the mutual 
coherence between the signal wave and the pump wave at 
the pump-wave entrance plane (z - L) in Fig. 5(b) both 
as functions of the optical path difference between the two 
waves at the signal-wave entrance plane (z = 0) for vari- 
ous intensity ratios ß. Figure 5(a) shows that the signal- 
intensity gain decreases as the optical path difference of 
the two waves increases until there is no coupling be- 
tween the two waves when the optical path difference of 
the two waves exceeds the coherent length of the source 
laser wave. The same figure also shows that the signal- 
intensity gain increases as the intensity ratio ß decreases 
until the signal-intensity gain saturates as the 
nondepleted-pump regime is reached. Figure 5(b) shows 
that the normalized mutual coherence of the two waves at 
the pump-wave entrance plane (z = L) decreases as the 
intensity ratio ß of the two waves increases. When ß is 
much larger than one, the signal wave will pass through 
the photorefractive medium with its statistical properties 
almost unchanged by coupling.   In this limit the normai- 
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Fig. 5. (a) Signal-intensity gain and (b) the normalized mutual 
coherence of the two waves at the pump-wave entrance plane 
(z = L) as functions of the optical path difference at the signal- 
wave entrance plane (r = 0) for a coupling constant y 
= 3 cm'1 and various intensity ratios between the signal wave 
and the pump wave. Note that the curve for a coupling constant 
y = 3 cm'1 and 0 *> 1 is the same as that for a coupling constant 
y = 0 cm"1 and an arbitrary ß. 

ized mutual coherence of the two waves at the pump-wave 
entrance plane (z = L) with coupling will be the same as 
that for an arbitrary ß but without coupling. We note 
that the normalized mutual coherence of the two waves at 
the pump-wave entrance plane (z = L) is enhanced by 
coupling. Figure 5(b) also shows that the normalized 
mutual coherence decreases quickly as the optical path 
difference gets close to and larger than the coherence 
length of the source laser wave. 

Second, we consider the case that the coherence length 
of the source laser wave is shorter than the thickness of 
the photorefractive medium.   The following parameters 
are chosen in the simulation:   a = 0.0 cm -l = 2.3, 
L = 2.0 cm, Sw = 2ir x 18 GHz. and td = -nL/c. td 

= -nL/c implies that the optical path difference be- 
tween the signal wave and the pump wave is zero at the 
signal-wave entrance plane (z = 0). Since the spectral 
line shape of the source laser wave is assumed to be 
Gaussian, the coherence length of the source laser wave 
inside the photorefractive medium is Lc = 2n 
x 0.664c7(n <$<•>) = 0.48 cm. In Fig. 6 we show the sig- 
nal intensity /j(z) and the grating profile Q(z)/J0(z) as 
functions of the position z inside the photorefractive me- 
dium for an incident intensity ratio ß = 1 and a coupling 
constant y = 20 cm-1. We note that the length of the 
photorefractive grating is limited by the partial coherence 
of the two interacting waves and that the pump depletion 
is moderate even for a very large coupling constant In 
Figs. 7(a) and 7(b) we show the signal intensity /t(z) and 
the grating profile Q(z)//0(z) as functions of the position 
z inside the photorefractive medium for an incident inten- 
sity ratio ß = 10"* and coupling constants y = 10 cm"1 

and y = 20 cm"1, respectively. We note that the length 
of the photorefractive grating is increased but still prima- 
rily limited by the partial coherence of the two interacting 
waves for a small incident intensity ratio and a small cou- 
pling constant. Figure 7(b) shows that the length of the 
photorefractive grating is no longer limited by the partial 
coherence of the two interacting waves for a small inci- 
dent intensity ratio and a large coupling constant. The 
length of the photorefractive grating in this case is lim- 
ited by the length of the photorefractive medium, which is 
much longer than the coherence length of the interacting 
waves. The photorefractive grating is a temporally sta- 
tionary index grating. When the incident intensity ratio 
is small, the amplified signal wave at its exit plane (z 
= L) is primarily the incident pump wave reflected by 
the photorefractive grating, and the depleted pump wave 
at its exit plane (z = 0) is primarily the incident pump 
wave transmitted through the photorefractive grating. 
When the length of the photorefractive grating is compa- 
rable to or longer than the coherence length of the source 
laser wave inside the photorefractive medium, the output 
waves Ei(L) and Ej(0) may have spectra different from 
those of the input waves E,(0) and E2(L) owing to the 
presence of the photorefractive grating, which acts as a 
spectral filter. In Figs. 8(a) and 8(b) we show the nor- 
malized spectra of the amplified signal wave and the de- 
pleted pump wave at their respective exit planes, using 
the same sets of parameters as those used to obtain Figs. 
7(a) and 7(b), respectively. We note that the amplified 
signal wave has a bandwidth narrower than that of the 
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Fig. 7. Signal intensity/^z) (solid curve) and the grating pro- 
file Q(i)//o(*) (daahed curve) u functions of the position i inside 
the photorefractivt medium for an incident intensity ratio ß 
=. 10"4 and coupling constanU (a) y = 10 cm"1 and (b) y 
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incident pump wave. Furthermore, the bandwidth of the 
amplified signal wave decreases as the length of the pho- 
torefractive grating increases. In Fig. 8(a), since the cou- 
pling constant is small, the pump-wave depletion is small 
(y = 10 cm"1) and the spectrum of the transmitted pump 
wave is almost the same as that of the incident pump 
wave. In Fig. 8(b), since the coupling constant is large 
(y = 20 cm'1), the pump depletion is significant. The 
central part of the incident pump-wave spectrum is de- 
pleted most significantly, and therefore the transmitted 

pump wave has a different spectrum from the incident 
pump wave. According to the spectra shown in Fig. 8, 
the case considered in Fig. 7(a) and Fig. 8(a) is in the 
nondepleted-pump regime, and the case considered in 
Fig. 7(b) and Fig. 8(b) is in the depleted-pump regime, al- 
though both cases seem to be in the nondepleted-pump re- 
gime when we look only at the signal intensity. In Figs. 
9(a) and 9(b) we show with solid curves the normalized 
mutual coherence of the two waves as a function of posi- 
tion z, again using the same sets of parameters as those 
used to obtain Figs. 7(a) and 7(b), respectively. For com- 
parison we show in these two figures with dashed curves 
the normalized mutual coherence of the two waves as a 
function of position z without coupling. In Fig. 9(a) the 
normalized mutual coherence of the two waves is the 
same with coupling as that without coupling in the region 
z < 0 and is increased in the region z > L owing to cou- 
pling; in Fig. 9(b) the normalized mutual coherence of the 
two waves is decreased in the region close to plane 
z = 0. The increase of mutual coherence in both Figs. 
9(a) and 9(b) can be attributed to the reflection of the 
strong pump wave in the direction of the weak signal 
wave by the stationary photorefractive index grating. 
The decrease of mutual coherence in Fig. 9(b) can be at- 
tributed to the spectral-filtering effect of the photorefrac- 
tive index grating on the pump wave. There is no de- 
crease of mutual coherence in the region close to plane z 
= 0 in Fig. 9(a) because pump depletion and therefore 
the spectral-filtering effect on the pump wave are negli- 
gible in this caae. 

Third, when a laser beam enters a photorefractive crys- 
tal, scattering occurs because of surface pits, imperfec- 
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Fig. 8.    Normalized spectra of the amplified signal wave (solid 
curve) and the depleted pump wave (dashed curve) at their re- 
spective exit planes for an incident intensity raüo^= iu    ana 
coupling constanU (a) y = 10 cm"1 and (b) y ~      " 20 cm" 
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the coherence length of the incident beams for various 
value of the coupling constant y. The parameters in this 
simulation are n = 2.3, L = 0.72 cm, a = 0.0 cm"1, and 
ß = 1.0 x 10~6. The time delay of the two waves is as- 
sumed to be zero at the signal-wave entrance plane 
(z = 0). The coherence length of the incident beams is 
related to the bandwidth as Lc = 2ir x 0.664c/Sw. We 
note that the phase-conjugation reflectivity increases as 
the coherence length of the incident beam increases and 
reaches to a constant when the coherence length of the in- 
cident beam is much longer than the thickness of the pho- 
torefractive medium. We also note that the phase- 
conjugation reflectivity increases as the coupling constant 
increases. 

0.5 1 1.5 
position z (cm) 
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Fig. 9. Normalized mutual coherence of the two waves as func- 
tions of position z for an incident intensity ratio ß * 10'4 and for 
coupling constants (a) y = 10 cm"1 (solid curve) and y 
= 0 cm*1 (dashed curve) and (b) y = 20 cm"1 (solid curve) and 
y = 0 cm"1 (dashed curve). 

Fig. 10. Phase-conjugation reflectivity as a function of the co- 
herence length of the incident beam for various value of the cou- 
pling constant y. 

tion. and defects in the crystal. The scattered light over- 
laps with the incident beam and they undergo two-wave 
mixing. Under the appropriate condition the scattered 
light can be amplified, leading to phenomena such as fan- 
ning and stimulated backscattering. In a manner very 
similar to stimulated Brillouin scattering the stimulated 
backward scattering in photorefractive media is a pos- 
sible mechanism for self-pumped phase conjugation.1416 

The general formulation developed in this paper can be 
employed to investigate the effect of coherence on self- 
pumped phase conjugation by 2k gratings. We show in 
Fig. 10 the phase-conjugation reflectivity as a function of 

4.   EXPERIMENTS 
The above theory is validated experimentally. The ex- 
perimental setup is shown in Fig. 11. We utilized a 45°- 
cut KNb03:Co crystal (the c axis is in the horizontal 
plane leaning toward the z = 0 face of the crystal, and 
the b axis is in the vertical direction). The measured pa- 
rameters of the crystal are y = 3.3 cm"1, a = 0.5 cm"1, 
n = 2.3, and L = 0.72 cm. A multimode argon laser op- 
erating at 514 nm is used as the laser source with a mea- 
sured FWHM bandwidth of 1.83 GHz. The extraordi- 
nary polarization of the laser wave is used in the 
experiment. As illustrated in Fig. 11, the signal wave 
and the pump wave, obtained by splitting the argon laser 
wave, propagate contradirectionally into the KNbOs:Co 
crystal. The incident intensity ratio of the two waves is 
ß = 0.00151. The power of the pump wave is main- 
tained at -50 mW. The optical path difference of the 
two waves at the signal-wave incident plane z = 0 is de- 
noted as AL = Lj - L\. To monitor the mutual coher- 
ence between the signal wave and the pump wave at the 
output plane z = L, we employed another reference wave 
(E2raf) that was split from the pump wave E2. The opti- 
cal path difference of Ej and E2„r waves was adjusted to 
be the same as that of E, and E2 waves at the output 
plane z = L.    By a simple homodyne technique, the in- 

. Beam Splitter ^  Mirror 

Argon Luer 
( X-5l4.5nm) 

Mirror 

Fig. 11. Experimental setup. The distances L, and Li are the 
optical path length of the signal wave and the pump wave from 
laser source to the signal-wave incident plane r = 0, respec- 
tively. L2rtf >8 the optical path length of reference wave E2n< 
from the laser source to the signal output plane z = L. 
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Fig. 12. Interference pattern of the signal wave and the refer- 
ence wave at the output plane PI (a) without photorefractive cou- 
pling and (b) with photorefractive coupling. Note the increase of 
fringe visibility that is due to the coupling. 

are also provided for various coupling constants and vari- 
ous incident intensity ratios between the signal wave and 
the pump wave. We found that the mutual coherence be- 
tween the signal wave and the pump wave can be both in- 
creased and decreased owing to coupling. We also found 
that both the strength and the length of the 
photorefractive-index grating increases as the coupling 
constant increases. A photorefractive index grating 
much longer than the coherence length of the incident 
waves can be formed when the coupling constant is large 
and the incident intensity ratio is small. Owing to the 
spectral-filtering effect of the photorefractive-index grat- 
ing, the spectra of the two interacting waves will be al- 
tered as they pass through the photorefractive medium. 
The general formulation is further used to model the ef- 
fect of partial coherence on self-pumped phase conjuga- 
tion by a 2k grating. The theoretical predictions are in 
excellent agreement with experimental measurements. 

.8     -«-4-2      0       2       4 
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Fig. 13. Signal-intanaity gain as a function of the optical path 
difference of the two waves at the signal-wave entrance plane 
(z » 0). The dot« are experimental data, and the solid curve is 
the theoretical data. 

terference fringes generated by E, and E2„f waves were 
observed by a CCD camera at the output plane PI. The 
normalized mutual coherence yl2(L) can be estimated as 
(/„,„ " /»inV[4(/,/2)

1/2], where (/m„ - /„».) is the ampli- 
tude of the fringes. In our experiment we monitored the 
interference pattern with and without pump beam E2. 
Figure 12 shows the interference patterns with a normal- 
ized mutual coherence r12(0,0) ~ 0.43 at z = 0 (AL 
= 4 cm). The measured normalized mutual coherence 
increases from 0.19 to 0.7 at z = L. The intensity gain 
of the signal wave was also measured. Figure 13 shows 
the measurement of the intensity gain (dots) of the signal 
wave at the z = L plane as a function of the optical path 
difference AL. Along with the data is the theoretical 
curve for the same parameters. An excellent agreement 
between theory and experiment was achieved. 

5.   CONCLUSIONS 
In conclusion, we have investigated theoretically contra- 
directional two-wave mixing with partially coherent 
waves in photorefractive crystals. A general formulation 
based on the theory of statistical properties of linear sys- 
tems is provided.16 Previous results on several simpli- 
fied cases are rederived as special cases of the general for- 
mulation so that we can get more insight into the general 
formulation as well as into the simplified cases. Results 
of numerical implementation of the general formulation 

APPENDIX A:   ERGODICITY PROPERTY 
In this appendix we provide the derivation of Eq. (10). 
Equation (9) gives the dynamics of the photorefractive in- 
dex grating. It can be rewritten into an integration form 
as 

Q(z,n —  I    E,(z, f)E2*{z. <')exp  Id«'. 
"ph J -» > Tph rph 

(AD 

Note that l/rph/'_. exp[«' - t]/rth]df = 1. According to 
Eq. (AD, the grating amplitude Q(z, t) is approximately 
the average value of Ei(z, t')E2*(z, t') over a time pe- 
riod rph. 

Since the optical wave amplitudes E,(z, t) and 
E2(z, t) are stationary random processes, the ensemble 
average <E,(z, *)E2*(z, t)) is independent of the time 
variable t. Taking the ensemble average of Eq. (AD, we 
can obtain 

(Q(z, t)) = (E,(z, OEjVr, t)) - r12(z. 0).    (A2) 

Equation (A2) shows that the ensemble average of the 
grating amplitude Q(z, t) is equal to the mutual coher- 
ence of the two waves. 

In general, the grating amplitude Q(z, t) is also a ran- 
dom variable. It fluctuates around its ensemble average. 
The mean square value of this random fluctuation, also 
called the variance of the random variable Q(z, t), can be 
written as 

(|Q(z, t) - <Q(z, 0)l2> = <IQ(*. <)|2> - KQU. 0>l2. 
(Ao) 

By using Eq. (AD, we can write the first term on the right 
side of Eq. (A3) explicitly as 

<IQ(z, t)\2) =   rph
2 J.J-. (F(z, nF*(z, <**)) 

x exp —-|exp(- -l*'ä' 
Tph    / \     TPh 

(A4) 
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where F(z, t) ■ E,(z, t)E2*(z, t) is a shorthand nota- 
tion. Since the optical wave amplitudes E,(z, t) and 
E2(z, t) are stationary random processes, F(z, t) is also a 
stationary random process. Therefore the ensemble av- 
erage (F(z, t')F*(z, t")) is a function of only two vari- 
ables z and t' - t". We define R(z, t' - t") 
s (F(z, t')F*(z, t")) as a shorthand notation. With 
this relation we can change the integration arguments in 
Eq. (A4) from f and t" to t, = f +■ t" - 2t and t2 = t' 
-  t" and rewrite Eq. (A4) as 

(IQtz.nl2) 
2V 

d/, expl— 'dt2R(z, t2). 
-■ ' Tph/ Jl| 

(A5) 

Note that l/(2Tph
2)/0_.d/, expU,/^,,)/'''^ = I. Sub- 

stituting Eqs. (A2) and (A5) into Eq. (A3), we can rewrite 
the variance of the grating amplitude Q(z, t) as 

(IQ(z.t) -<Q(z,r))|2> 

■1,  f°dt,exp(-^-) f  ''dt2[R(z, <2> 

- |r12(z.o)|2]. (A6) 

Remember that F(z, t) is a stationary random process. 
Let At be the minimum time delay that is necessary for 
F(z, t) and F(z, t t At) to be uncorrelated. For |t2| 
* At, lUz, t2) - |r12(z, 0)|2 is equal to zero. For |t2| 
« At, R(z, t2) - |r12(z, 0)|2 is a function of t2. Since 
both R(z, t2) and |r12(z, 0)|2 are of the order of 
/,(z)/2(z), the upper bound of Biz, t2) ~ |rl2(z, 0)|2 can 
be written as m/i(z)/2(z), where m is a constant factor of 
the order of unity. With these estimations we can obtain 
from Eq. (A6) 

(IQU, t) - (Q(z, t))|2> < mlx(z)l2(z) 
At 

rph 
(A7) 

According to relation (A7), the fluctuation of the grating 
amplitude Q(z, t) decreases as the ratio At/rph decreases. 
When At/Tph <* 1, we can neglect the fluctuation of the 
grating amplitude Q(z, t) and obtain Eq. (10), i.e., 

Q(z, t)~(Q(z, t)) = r12(z,0). (A8) 

Usually At is of the order of the coherence time (Sw)~l of 
the incident waves. In this case the condition for Eq. 
(A8) can also be written as Swrfh > 1. 

In this appendix we have shown that the time average 
of the random variable Ei(z, DE^'iz, t) is equal to the 
ensemble      average      of      the      random      variable 

E,(z, t)E2*(z, t). This type of property is referred to as 
ergodicity in statistics. 
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